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Abstract—This work studies the authentication problem of
specific pieces of paper using mobile imaging devices. Prior work
showing high matching accuracy has used the normal vector field,
which serves as a unique, microscopic, physically unclonable
feature of paper surfaces, estimated by consumer-grade scanners.
Industrial cameras were also used to capture the appearance
of the surface rendered after the normal vector field based on
the laws of optics under a semi-controlled lighting condition. In
comparison, past explorations based on mobile cameras were
very limited and have not had substantial success in obtaining
consistent appearance images due to the uncontrolled nature of
the ambient light. We show in this work that images captured
by mobile cameras can be used for authentication when the
camera flash is exploited to create a semi-controlled lighting
condition. We have proposed new algorithms to demonstrate that
the normal vector field of the paper surface can be estimated by
using multiple camera-captured images of different viewpoints.
Perturbation analysis shows that the proposed method is robust
to inaccurate estimates of camera locations, and a matching
accuracy of 10−4 in equal error rate can be achieved using 6
to 8 images under a lab-controlled ambient light environment.
Our findings can relax the restricted imaging setups and enable
paper authentication under a more casual, ubiquitous setting with
a mobile imaging device, which may facilitate duplicate detection
of paper documents and counterfeit mitigation of merchandise
packaging.

Index Terms—Anti-Counterfeit, Paper Physically Unclonable
Features (PUFs), Mobile Cameras, Photometric Stereo, Mi-
crostructure

I. INTRODUCTION

Merchandise packaging and valuable documents such as
tickets and IDs are common targets for counterfeiting. Low-
cost surface structures have been exploited for counterfeit
detection by using their optical features. The randomness
of the surface makes the structures physically unclonable or
difficult to clone to deter duplications. Such surface structures
can be extrinsic by adding ingredients such as fiber [2], [3],
small plastic dots [2], air bubble [2], powders/glitters [4] that
are foreign to the surface; and the surface structures can also
be intrinsic by exploring the optical effect of the microscopic
roughness of the surface, such as the paper surface formed by
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inter-twisted wood fibers [4]–[8]. The inherent randomness of
the microscopic roughness quantified using the normal vector
field has been used as a feature for the unique identification
of a particular patch of a surface in [4], [5].

In this paper, we focus on the intrinsic property of the paper
surface for counterfeit detection and deterrence, and seek to
find a more casual, ubiquitous imaging setup using consumer-
grade mobile cameras under commonly available lighting
conditions. The previous work in [4]–[6] shows that the
microscopic roughness of the paper surface can be optically
captured by consumer-grade scanners and industrial cameras,
both under controlled lighting conditions in the form of image
appearance rendered according to the physical law of light
reflection at the paper surface. The appearance images, and the
subsequent normal vector field of the surface estimated from
the appearance images, can achieve satisfactory authentication
results. However, recent work in [4], [8] also showed that if the
ambient lighting is not well controlled, the image appearance
alone has not achieved satisfactory authentication results.
Instead, features based on the intensity gradient of visually
observable dots are less sensitive to the change of lighting and
may be used for authentication at the cost of higher algorithm
complexity and moderate discrimination capabilities [8].

Satisfying two requirements may facilitate paper authenti-
cation via mobile cameras. First, the mobile-captured images
should be comparable in resolution and contrast to those
captured by scanners. Second, lighting should be controlled to
render a desirable appearance of the paper. The first require-
ment can be qualitatively checked by comparing the acquired
images from scanners and mobile cameras. Images acquired
in both ways do have similar, detailed intensity fluctuations
when zoomed in. The second requirement can be fulfilled by
activating the flash next to the camera lens on mobile devices.
The desirable appearance of the surface can be reasonably
expected from the geometric arrangement between the camera
and the surface.

As we shall show in this paper, camera flash exploited for
creating semi-controlled lighting conditions can significantly
improve the performance of using appearance images as the
authentication feature. More importantly, by exploiting the un-
derlying rendering principle of the appearance of the surface,
i.e., the fully diffuse reflection model [5], [9], one can estimate
the normal vector field of the surface without resorting to
more restricted acquisition conditions. To the best of our
knowledge, this paper together with its preliminary version
[1] is the first set of work using mobile cameras to obtain
an effective estimate of the normal vector field of the paper
surface for authentication. In this journal version, additional
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Fig. 1: (a) A topographic map of a 1mm-by-1mm region of a paper
surface captured by a confocal microscope, reproduced from [10].
The pseudo-color represents the elevation of fibers in the z-direction.
(b) Microscopic view of a particular spot on a paper surface. Note
that φ and θ are not co-planar in most cases. All vectors are unit
vectors.

experimental results are presented for more practical capturing
scenarios. Extended perturbation analyses of discrimination
power on two factors, namely, the inaccuracy of estimated
camera locations and the number of images used for normal
vector field estimation, are conducted and explained using
statistical methods. “Ground-truth” 3-D structure of a paper
surface is obtained with confocal microscopy in order to
quantitatively examine the linkage between the appearance and
the physical structure of the paper surface.

The paper is organized as follows. In Section II, we review
light reflection models, the method for paper surface registra-
tion, and the method for paper authentication. In Section III,
we examine the authentication performances when restricted
imaging setups are used, which serve as a performance base-
line. In Sections IV and V, we propose methods working under
a more flexible setup—mobile cameras with built-in flash, and
compare the performances with prior work. In Section VI, we
conduct perturbation analysis to demonstrate the practicality of
the proposed mobile camera-based authentication method. In
Section VII, we use confocal microscopic data from a physics
aspect to elucidate a deeper understanding of the proposed
work and also address some practical issues. In Section VIII,
we conclude the paper.

II. BACKGROUND AND PRELIMINARIES

A. Optical Imaging of Paper and Light Reflection Models

Seemingly smooth paper surfaces contain inherent micro-
scopic 3-D structure due to overlapped and inter-twisted wood
fibers. This microscopic structure is different from one paper
to another and even from one location to another on the
same paper, and therefore can serve as a unique identifier or
fingerprint. One quantitative feature of such a 3-D structure,
the surface direction, has been successfully exploited for
authentication in [4]–[6].

Fig. 1(a) shows a topographic map of a 1 mm-by-1 mm
region of a paper surface estimated from images captured by a
confocal microscope [10]. The microscopic roughness due to
fibers is clearly shown. The visual appearance of the surface
follows the law of optics.

Geometrical light reflection models such as specular model
and diffuse model have been widely used in computer vi-
sion/graphics applications, due to their good approximations

to the law of optics and relatively simple analytical forms [9],
[11], [12]. Under the specular reflection model, the perceived
intensity is dependent on the direction of the reflected light
and the direction of the eye/sensor. Under the diffuse reflection
model, the perceived intensity is dependent on the direction of
incident light and the normal direction of the microscopic sur-
face. The appearances of most surfaces contain both reflection
components.

Previous authentication work [4], [5] treating paper as a
fully diffuse surface has led to satisfactory results. We follow
a fully diffuse modeling assumption and provide an experi-
mental justification in the discussion section that the strengths
of the diffuse component versus the specular component is
about six to one.

Fig. 1(b) shows the microscopic surface normal direction,
n, of a particular spot p in a microscopic view (which is often
different from the macroscopic surface direction, n0), and an
incident light direction, v. The perceived reflected intensity lr
of the fully diffuse reflectance model [5], [9] is

lr(p) = λ · l(p) · n(p)Tv(p)︸ ︷︷ ︸
=cosφ(p)

, (1)

which depends on the angle φ(p) between the normal direction
of the surface at the microscopic level, n = (nx, ny, nz), and
the direction where the incident light is coming from, v =
(vx, vy, vz); the strength of the light at the current spot, l(p);
and the albedo, λ, characterizing the physical capability of
reflecting the light [11], [12]. In our work, the assumption of
λ being constant over the whole paper patch is found to hold
well for the purpose of authentication.

For an ideal point light source, the light strength l(p) over
a spatial field is modeled by considering the effect of energy
fall-off due to the travel distance of the light [12]. In practice,
a camera flash is not a perfect point source but has a finite
dimension, e.g., in a disc-like shape. When the flash is not
perfectly oriented toward the paper surface, it can lead to a
foreshortening effect reducing the strength of the light arriving
at the projected point of the light on paper. Therefore, it is
practically difficult to model l(p) with a high precision for
nonideal point sources. Instead, we estimate l(p) by exploiting
its spatial smoothness property. With the values of l(p), the
microscopic structure can then be determined in terms of
normal vectors, n(p).

B. Paper Patch Registration

We use a simple square-shaped registration container from
our recent work [4] as shown in Fig. 2(b), and a tri-patch
extension as shown in Fig. 6(b), to facilitate the precise reg-
istration in our experiments. Considering a printing resolution
of 600 pixels per inch, each square container of size 2

3 -by-
2
3 inch2 (1.69-by-1.69 cm2) corresponds to a box of 400-by-
400 in pixel at a line width of 5 pixels, and there are four
circles at corners of each square. A preliminary alignment
based on four boundaries can be achieved using a Hough
transform, and subpixel resolution refinement with perspective
transform compensation is then carried out based on the circle
markers. Lens location relative to the surface in the world
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Fig. 2: (a) Four camera shots are needed for capturing 49 square
patches located on a piece of paper. (b) Image captured at position#1
under ambient (fluorescent) light without flash (database 505), and
(c) with flash (database 501). Capturing device: iPhone 6.

coordinate system can be readily calculated from the estimated
perspective transform matrix, and then the direction of incident
light at every pixel location is known. Note that the world
coordinate system is naturally defined to have the xy-plane
located at the bottom plane of the paper surface and the z-axis
pointed upwards. All camera-captured images were unwarped
to remove the effect of lens distortion before being used if they
were captured by a camera. This step improves the matching
performance on average by 0.04 in terms of correlation value
in our experiments.

C. Authentication via Hypothesis Testing

We approach the patch verification problem as a binary
hypothesis testing problem [13] using discriminative features
derived from images of the paper. The null hypothesis H0 is
that the test/query patch does not match with the patch from
the reference database, whereas the alternative hypothesis H1

is that the test/query patch matches with the reference patch.
To quantify the degree of match, we use the normalized sample
correlation ρ̂ on the pair of extracted features, e.g., pixel inten-
sity in Section IV and surface normal vector in Section V. We
estimate the probability density functions (PDFs) fρ̂|H0

(ρ̂) and
fρ̂|H1

(ρ̂) that have very distinct mean values under unmatched
and matched cases, and make a decision using the simple
thresholding rule on an observed value of the random variable
ρ̂.

Under the simple thresholding rule with threshold τ , the
detection rate is defined to be PD(τ) =

∫∞
τ

fρ̂|H1
(ξ) dξ [or

its complement, the miss rate, PM (τ) = 1 − PD(τ)] and the
false-alarm rate is defined to be PF (τ) =

∫∞
τ

fρ̂|H0
(ξ) dξ. The

receiver operating characteristic (ROC) curve
(
PF (τ), PD(τ)

)
can be drawn by varying the value of τ to reveal the dis-
crimination capability of the system. Alternatively, the equal
error rate (EER), {PEE |PEE = PF (τ) = PM (τ), τ ∈ R},
can be used as a compact, one-score indicator for the discrim-
ination capability. For Gaussian and Laplacian distributions,
it is not difficult to derive the analytical forms of EER
to be Φ

(
µ0−µ1

σ0+σ1

)
and 1

2exp
[

λ0λ1

λ0+λ1
(µ0 − µ1)

]
, respectively

[13], [14], where Φ(·) is the cumulative density function for
the standard Gaussian distribution. The theoretical quantities,
including the mean µi, standard deviation σi, and rate λi,

Fig. 3: Scanned images from four perpendicular orientations of a
piece of 2

3
-by- 2

3
inch2 (1.69-by-1.69 cm2) paper, and the resulting

estimated norm map covering 1/100 area of that paper.

can be replaced by their estimates from the real data. In this
way, EER can be estimated even when there are a relatively
limited number of data points and/or the PDFs are widely
separated, in which the true tails of the PDFs may not be
adequately revealed by simulated data. More discussions on
using practical data for the theoretical model described above
can be found in Section VII-E.

III. PAPER AUTHENTICATION USING SCANNERS AND
CAMERAS

A. Norm Maps by Scanners

The norm map as a physical feature of a paper surface has
been found to have strong discrimination power. Clarkson et
al. [5] used the fully diffuse reflectance model as described
in Eq. (1) to estimate the projected normal directions at
all integer-pixel locations of the surface. We refer to the
collection of normal vectors for all pixels as the normal
vector field (containing x-, y-, and z-components), and its
projection onto surface plane as the norm map (containing
x- and y-components only). A norm map can be estimated
using images scanned from four different orientations of the
paper: 0◦, 90◦, 180◦, and 270◦. Without knowing the exact
direction of incident light, an estimate of one component of
the norm map can be obtained as the difference between two
scans in exactly opposite directions, canceling the effect of
the unknown incident direction of the scanner light. The norm
map containing randomly distributed vectors has been used as
a feature for the unique identification of a particular patch of a
surface in [4], [5]. In [5], a seeded hash is computed by random
projection, and the Hamming distance of two hashes is used
as the decision statistic. The sample statistics such as mean
and variance measured from Fig. 8 of [5] reveal the EER to
be between 10−130 and 10−15 (see Table VI for comparison)
per our discussion on estimating the EER in Section II-C.

In order to provide more accurate norm map estimates as
the reference data for our proposed method in Section V, we
improve the norm map estimation algorithm over those in [4],
[5] by removing the global bias for x- and y-components of the
estimated norm map. Below we carry out experiments using
the improved norm map estimator to provide a baseline for
comparisons in later sections.
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Fig. 4: Estimated PDFs of sample correlation coefficient ρ̂ for unmatched (H0) and matched (H1) cases. First row (intra-scanner): Datasets
#2–3 (test) vs. #1 (ref.) of scanner 2450, and second row (inter-scanner): Datasets #1–3 (test) of scanner GT vs. #1 (ref.) of scanner 2450.
Features: length (column 1), x-component of normal vector (column 2), and y-component of normal vector (column 3).

We estimated norm maps for 49 distinct square-shaped
patches located on a piece of paper. The acquisition procedure
was repeated using two Epson scanners: Perfection 2450 and
GT-2500. Sample patches for scanner 2450 and the resulting
norm map estimate of 1/100 of the patch size are shown in
Fig. 3. Authentication using the hypothesis testing described
in Section II-C was carried out by correlating the test feature
with the reference feature. Three features, namely, the normal
vector’s length, x- and y-components, were tested and the
results are shown in the three columns of Fig. 4, respectively.
Each plot contains two estimated PDFs of sample correlation
coefficient ρ̂: one for matched cases (H1), and the other for
unmatched cases (H0). All six plots reveal that the distribu-
tions for the two hypotheses are far apart and have no overlap,
thus a threshold can be set to have no false alarm and no miss
detection, suggesting an excellent authentication performance.
In addition, the performance for the intra-scanner case (i.e.,
both test and reference data were obtained using the same
scanner) shown in the first row of Fig. 4 is slightly better than
that for the inter-scanner case (i.e., test and reference data were
obtained using different scanners) shown in the second row.
They reveal that different acquisition devices can give slightly
inconsistent norm map estimates but the inconsistency is not
strong.

B. Appearance Images by Cameras

Instead of using scanners to capture images with di-
rectional linear light and closely placed imaging sensors,
Voloshynovskiy et al. [6], [7] examined the imaging setup of
using two industrial cameras with a semi-controlled lighting
condition—a fixed, ring-shaped light source. The resulting
images have similar appearances during multiple capturing
instances due to the semi-controlled lighting conditions. The
ROC curves from [6] reveal that the EER is around 10−4.

Mobile cameras were used to test the authentication per-
formance under uncontrolled ambient light in [4]. The un-
controlled light can lead to unpredictable surface appearances
per the light reflection model in Eq. (1). Even using newer
mobile cameras such as the iPhone 6 with improved acquisi-
tion quality over the older mobile devices, the authentication

performances under uncontrolled ambient light are still lim-
ited, as revealed by Fig. 3 of [4]. One way to improve the
authentication performance as shown by Diephuis et al. [8] is
to use the intensity gradient-based features, e.g., scale-invariant
feature transform (SIFT), of high contrast spots that are less
sensitive to the change of lighting, at the cost of increasing the
design complexity of the authentication system. Extrapolating
data points from Table 2 of [8] into the ROC plot of Fig. 8 of
[8], we estimate the performance of the proposed SIFT-based
method to be around 10−2 in terms of EER (see Table VI for
comparison).

IV. PROPOSED PAPER AUTHENTICATION USING IMAGE
APPEARANCE UNDER THE CAMERA FLASH

Inspired by the success of the approaches discussed in
Section III in which lighting for image acquisition is well
controlled, we explore a semi-controlled lighting condition
with the help of the built-in flash of mobile cameras for au-
thentication. We achieve the semi-controlled lighting condition
by exploiting the fact that relative positions among the light
source, the lens, and the paper patch are known or can be
estimated from a captured image.

The simplest case, presented in Section IV (this section),
is to use the appearance of the patches when cameras are
positioned at the same location relative to the physical patch
so that the effect of lighting is the same for instances of
capturing test and reference images. A more sophisticated
case, presented in Section V (the next section), is to exploit the
physics of lighting and to use multiple images for estimating
the normal vector field as the feature for authentication.

A. Capturing Conditions and Proposed Method

Patches were acquired by the built-in cameras of three
mobile devices, iPhone 6, iPhone 5s, and iPhone 5, with
and without a flash. The capturing process was done in a
large room with 12 overhead fluorescent light arrays, and
in a small room with 2 overhead fluorescent light arrays,
respectively. The device was held by hand approximately in
parallel with the surface of a piece of paper and at a height
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of about z = 15.5 cm. Detailed capturing conditions and
the corresponding database ID that will be referred to in the
remaining part of this section are shown in Table I.

We use a total of 49 distinct square-shaped paper patches for
the experiment. To acquire a database of a particular capturing
condition, we captured three images for every patch, with
slight camera rotation and panning among different capturing
instances. Within each database, we refer to the 49 patches
for the ith capturing instance as Dataset #i, for i = 1, 2, 3.
To speed up the capturing process, patches were acquired
together with neighboring patches located on the same piece
of paper. A total of four shots were needed to capture the
whole region containing the patches, and the camera positions
relative to the paper are shown in Fig. 2(a). Boundaries among
different shots are separated by thick lines. Fig. 2(b) and (c)
containing luminance non-uniformity were acquired without
and with flash for the top-left 20 patches on the layout of the
paper.

The way of capturing the whole database of patches as
laid out above ensures that any pair of matched test and
reference images are captured at the same location relative
to the physical patch. That is, the incident light for the test
and reference images are the same, effectively controlling the
acquisition conditions. In this way, the perceived intensities
of patches are similar across different capturing instances per
the fully diffuse light reflection model in Eq. (1). We shall
examine in Section V how an authentication scheme should
be designed when we do not constrain the relative locations
of the cameras to the physical patches.

Each patch in the captured image was extracted, warped, and
registered to a grid of 200-by-200 pixels using the registration
procedure outlined in Section II-B. In this experiment, images
captured at the height of about z = 15.5 cm contain around
300 pixels along the edge/side for each patch in raw images,
which are of enough resolution (1.25× more pixels than
necessary) to generate the registered images. The collection
of the 200× 200 pixel values of the registered image is then
considered as a feature for the paper patch, and normalized
sample correlation ρ̂ between features from test and reference
patches can be calculated for authentication using the hy-
pothesis testing described in Section II-C. In this experiment,
Datasets #2 and #3 of a database are considered as the test
data, and Dataset #1 of the same or a different database is
considered as the reference data.

B. Experimental Results

The contrast of the PDF plots between the first row and
second row in Fig. 5 shows a significant improvement due
to the use of the camera flash. The plots in the first row
of Fig. 5 reveal that when the test patches with a flash
are matched against reference patches without a flash, the
authentication performances are limited. A representative plot
such as Fig. 5(b) has an EER of around 10−1. The plots
in the second row of Fig. 5 reveal that when both test and
reference patches are captured under camera flash as we
proposed, the authentication performances are good and the
ambient lighting conditions do not have a major negative

effect on the performances. A representative plot such as
Fig. 5(f) has an EER of around 10−5 to 10−3 (see Table VI for
comparison) per our discussion on estimating the EER with
different probabilistic models in Section II-C.

Tables II–III present the comprehensive results of various
combinations of test and reference databases. Table II reveals
that the flash is the dominating factor affecting the authen-
tication performance whereas the condition of the ambient
light is not an important factor. Table III reveals that good
authentication performance can be achieved across devices of
similar imaging modules. The slightly lowered performances
for the combinations of iPhone and Canon cameras can be
attributed to the different imaging configurations for the two
brands of cameras, such as the pattern of the flash, and the
relative position of the flash module to the lens.

V. PROPOSED SURFACE NORM ESTIMATION FOR PAPER
AUTHENTICATION USING MOBILE CAMERAS

Although the authentication scheme using flash proposed
in Section IV outperforms schemes that flash is not used, the
requirement that the test and reference images must be cap-
tured at the same position relative to the physical patch is not
practical. As mobile cameras have ever-increasing acquisition
quality, we ask a research question: Is it possible to use mobile
cameras to estimate the physical feature of the paper—the
normal vector field—by using multiple images, while solving
the issues of camera geometry and lighting? Photometric
stereo approaches have long been used to reconstruct 3-D
surfaces using photos of surfaces [12]. However, the challenge
here is that the scale of the surface of interest in our problem
is much smaller. We therefore need to carefully examine
the physics of light reflection and arrive at a light reflection
model with a proper level of sophistication, in order to obtain
meaningful estimates of the normal vector field.

A. Macroscopic Intensity Due to Camera Flash

Examining the images captured under the flash in Fig. 2(c),
one can observe that there exists a mild spatial intensity change
across the image. Examining the reflective intensity of a small
region under a strong light both by human eyes and from
the digital image, one can observe a high spatial frequency
fluctuation in addition to the mild intensity change. Given that
the light intensity arriving at the paper slowly varies spatially,
this fluctuation of the reflective intensity is therefore attributed
mainly to the inconsistent orientations of the paper surface at
the microscopic level. To reveal the intensity change in fine
detail, the mild change at the macroscopic level should be first
removed. We define the image intensity at the macroscopic
level as the macroscopic intensity, lmacro.

It can be shown as follows that the macroscopic intensity
lmacro is proportional to the light strength arriving at the
surface, l, and cosine of the incident angle, θ. We approximate
the macroscopic intensity by the averaged perceived intensity
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TABLE I: Capturing Conditions for Various Databases

Database ID 502 503 506 508 509 510 501 511 505

Lighting flash only flash + ambient light ambient light only

Device iPhone 6 iPhone 5s iPhone 5 iPhone 6 Canon SX230HS iPhone 6

Room Size small large small large small large
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Fig. 5: First row: authentication performances of 4 test databases vs. reference database #505 (ambient light only). Second row: performances
of 4 test databases vs. reference database #501 (flash + ambient light, proposed). Capturing device: iPhone 6.

TABLE II: Modes of estimated PDFs of correlation1 for matched
cases (H1). Contrasting conditions: using flash or not, and small vs.
large room size.

Ref 

Test 

With Camera's Built-in Flash No flash 

Small Room Large Room 

501 502 503 506 505 

501 0.48 0.44 0.43 0.40 0.21 

502 0.45 0.45 0.47 0.40 0.22 

503 0.43 0.47 0.48 0.41 0.19 

506 0.42 0.45 0.42 0.43 0.21 

507 0.40 0.41 0.40 0.40 0.23 

505 0.21 0.24 0.24 0.24 0.32 

1 The italic numbers in this table and Table III correspond to the scenarios
that estimated PDFs for matched (H1) and unmatched (H0) cases can be
perfectly separated.

TABLE III: Modes of estimated PDFs of correlation under for
matched cases (H1). Contrasting condition: camera model.

 

Ref 

Test  

iPhone 6 iPhone 5s iPhone 5 
Canon 

SX230 

503 506 508 509 510 511 

503 0.48 0.41 0.47 0.44 0.36 0.31 

506 0.42 0.43 0.44 0.42 0.36 0.29 

508 0.46 0.42 0.52 0.47 0.38 0.33 

509 0.44 0.41 0.47 0.50 0.37 0.32 

510 0.37 0.35 0.38 0.37 0.35 0.24 

511 0.28 0.26 0.32 0.30 0.23 0.26 

 

 lr of background pixels over a small neighborhood N around

a pixel location p:

lmacro(p) ≈ lr(p) (2a)

=
1

|N (p)|
∑

k∈N (p)

λ · l(k) · n(k)Tv(k) (2b)

(a)
≈ λ · l(p) ·

[
1

|N (p)|

∑
n(k)

]T
v(p) (2c)

(b)
≈ λ · l(p) · E [n(p)]

T
v(p) (2d)

(c)
= λ · l(p) · [0, 0, µnz

]v(p) (2e)
= λ · l(p) · µnz · vz(p)︸ ︷︷ ︸

cos θ at p

(2f)

where |N (p)| is the number of pixels in the small neigh-
borhood of p; step-a follows from the fact that l(k) and
v(k) are approximately constant over the small neighborhood;
step-b follows from ergodicity; and step-c follows from the
assumption that the normal vectors in the world coordinate
system defined in Section II-B are on average pointing straight
up, i.e., E[nx] = E[ny] = 0 and E[nz] = µnz

, where µnz
is a

modeling constant between 0 and 1.
The smooth nature of the macroscopic intensity lmacro over

the spatial coordinates makes parametric surfaces promising
candidate estimators. In this work, we fit a high-order polyno-
mial surface directly to an image captured under flash using
an iteratively reweighted least-squares method. The bisquare
weights [15] were used to gradually lower the impact of
outliers as iteration went on. The original image and its
parametrically fitted version are shown in Fig. 6(b) and (c). As
our objective is to obtain the macroscopic intensity due to the
flash, the image pixels belonging to the registration container
and the QR code are considered to be outliers for the surface
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fitting purpose. The fitting was excellent with almost no bias.
The sample standard deviation, about 2 out of 256 shades of
gray, quantifies the magnitude of the fine details of the image
appearance of the paper. Fig. 6(d) shows a representative row
of pixels (with outliers) and its fitted curve.

One should note that even though a detrended patch im-
age can be obtained by pixel-wise division of macroscopic
intensity lmacro, the detrended patch image is not suitable
directly for authentication via correlating with some reference
image. After detrending, images for the same patch captured
with light/camera located at different relative locations to the
physical patch can have different visual appearances at a small
scale. This is caused by the different incident light directions
with respect to the microscopic surfaces. Fig. 6(e) shows four
such detrended patch images when camera locations were at
the four corners of the patch. They appear similar at a large
scale after detrending but are very different at a small scale
due to different incident light directions.

Fig. 7 shows the averaged correlations among the detrended
patches as a function of the horizontal and vertical differences
in patch locations (∆N p

x,∆N p
y), or equivalent in camera

capturing locations (∆Nx,∆Ny). The figure reveals that the
farther the capturing distances of cameras for two patches
are, the lower the correlation can be for the detrended patch
images. This is reasonable as more change in the direction
of the incident light leads to more change in the microscopic
appearance of the paper surface. This implies that without the
proper constraints of the relative position between the camera
and the patch, it may not be sensible to verify a paper surface
using its detrended image, as the correlation value can be
unpredictable and not a single threshold can be selected to
determine the authenticity. This observation further justifies
the need to use normal vectors for authentication instead of
using images directly.

B. Estimating the Normal Vector Field

In order to solve for the normal vectors n(p), we combine
Eq. (1) characterizing the pixel-wise intensity and Eq. (2)
characterizing the macroscopic intensity via canceling their
common term λ ·l(p). One can arrive at the following equality
by grouping constants and known terms to the left-hand side:

ζ(p) ≈ n(p)Tv(p) (3)

where ζ(p) = µnz
vz(p) · lr(p) / lmacro(p) is defined as

the normalized intensity and contains the unknown modeling
constant µnz , the image acquired under flash lr, and the
already estimated terms lmacro and vz . On the right-hand side,
normal vector n(p) is yet to be solved, and incident light
direction v(p) is known from the previous estimation. The
inference problem of the normal vector field can therefore be
restructured into a linear regression problem when Eq. (3) is
overdetermined.

More specifically, we estimate the normal vectors indepen-
dently at every pixel location for a total of 200×200 pixels. For
each pixel location p, we set up a system of linear equations

using M = 20 acquired images, where M is far greater than
4, the number of unknowns:

ζ1
ζ2
...

ζM


︸ ︷︷ ︸

ζ

=


vT
1 1

vT
2 1
...

...
vT
M 1


︸ ︷︷ ︸

X


nx

ny

nz

b


︸ ︷︷ ︸

β

+


e1
e2
...

eM


︸ ︷︷ ︸

e

. (4)

The unknown parameter β contains the normal vector and
an intercept b capturing any offset at location p such as the
one indirectly due to ambient light. The observation vector
ζ consists of normalized intensity values at the collocated
position p from images #1 to #M . The data matrix X is
composed of vectors of incident directions, and the noise from
measurement and/or modeling is modeled by a zero-mean
error vector e.

C. Proposed Method
Fig. 8 is a block diagram for the proposed authentication

system. To authenticate a given test surface patch, M > 4
photos should be taken under flash. Each photo is processed
to extract, warp, and register the captured patch to a grid of
200-by-200 pixels using the registration procedure outlined
in Section II-B. The resulting M registered patches with
luminance nonuniformity are then processed by the diffuse
reflection-based estimator proposed in Section V-B. An esti-
mated normal vector field is therefore obtained and is used
as an authentication feature for the surface patch. Its x- or y-
component can be correlated with a reference to determine
the authenticity using the hypothesis testing described in
Section II-C.

We treat the estimated norm maps from scanners as the
reference, since they are reliable as discussed in Section III-A
and relatively easy to obtain. More precise estimates of the
norm maps can be obtained using microscopes. However,
the benefit brought by the microscope with a much more
controlled acquisition condition is marginal, and we will keep
using norm maps from scanners as a reference.

D. Experimental Conditions and Results
Fig. 9 illustrates the experimental setup for capturing paper

patches for estimating normal vector field using a mobile
device. The mobile device was placed on a tripod and adjusted
to be in parallel with the surface. The photos captured at
the height of about z = 11.4 cm contain around 500 pixels
along the edge/side for each patch in raw images, which are
of enough resolution (5.25× more pixels than necessary) to
generate the registered images of size 200-by-200. Detailed
lighting conditions and models of mobile cameras are de-
scribed individually for each capturing session.

One should note that the exact parallel configuration is not
a required condition for our proposed method, and in this
exploratory work, the parallel configuration was designed to
avoid perspective-related complications. We later conducted
additional experiments in which mobile cameras were held
by hand and not exactly in parallel with the surface, and the
results showed no degradation in authentication performance.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 8, AUGUST 2017 8

1 5 9 13 17 

2 6 10 14 18 

3 7 11 15 19 

4 8 12 16 20 

(a) (b) (c)
0 1000 2000

0

0.2

0.4

0.6

0.8

in
te

n
si

ty
 (

n
o

rm
a

li
ze

d
 t

o
 [

0
,1

])

(d) (e)

Fig. 6: (a) A total of M = 20 indexed locations for captured patches in images, (b) a paper patch at location #6 of Session 6, paper #920,
(c) its estimated macroscopic intensity image lmacro obtained by fitting an order-(5, 5) polynomial surface, (d) a row of intensity values
from the middle of the image in (b) and the fitted curve, and (e) detrended images (with contrast enhancement) of Session 6 for the paper
patch #920 at locations #1, #17, #20, and #4, respectively, shown clockwise.
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TABLE IV: Statistics for correlation values of matched cases (H1)
for images captured in a completely dark environment (EXP. 1).

Norm Vector 
session 4 session 5 

�̂� �̂� �̂� �̂� 
x-component 0.534 0.011 0.554 0.013 

y-component 0.523 0.012 0.493 0.015 

1) Completely Dark Environment: Two sessions, namely,
Session 4 and Session 5 (aka EXP. 1), were independently cap-
tured using iPhone 6 at the same paper patch in a completely
dark environment. Each session contains 20 camera-captured
images for the paper patch at 20 different locations indexed
in Fig. 6(a).

For each norm map component and each session, we corre-
late the estimate from the mobile camera with the six estimates
from two scanners (three slightly different norm maps for each
scanner), and a set of six scores is obtained. A t-test is carried
out over the group of scores to check if the correlation is
significantly greater than 0.

The results in terms of the sample mean and sample standard
deviation are shown in Table IV. It is revealed that either x-
or y-component of Sessions 4 and 5 has a correlation around
0.5, and the t-tests show that all correlation values obtained
are statistically significantly (p-value < 10−9).

2) Environment with Ambient Light: We relax the com-
pletely dark assumption by investigating more realistic sce-
narios with the addition of ambient light. Sessions 6–10 (aka
EXP. 2) and Sessions 11–15 (aka EXP. 3) were captured in a
low-strength diffuse ambient light environment using iPhone 6
and iPhone 6s, respectively. Further, Sessions 21–25 (aka
EXP. 4) were captured in an environment with ambient light
at the strength of indoor offices using iPhone 6s.

In addition to the result obtained in EXP. 1 that the cor-
relation achieved using norm maps from mobile camera is
significantly greater than 0, we would like to further mea-
sure quantitatively the discrimination capability that can be
achieved in terms of the ROC curve

(
PF (τ), PM (τ)

)
and/or

more compactly, the equal error rate (EER), as outlined in
Section II-C.

For the rest of this paper, each session will generate only one
correlation value in each normal vector component, and the
value is calculated by averaging over the six scores that can be
computed from correlating with the slightly different versions
of the reference norm maps. This approach is an effort towards
reducing the effect of the inaccurate norm map estimates used
as references at the service provider side, without adding
burden to users during the verification process.

Fig. 10(a) shows the estimated PDFs for the matched (H1)
and unmatched (H0) cases for EXP. 2. Under the acquisition
condition for EXP. 2, the correlation values do not contain
outliers and are distributed around a certain value. We there-
fore can consider they are sample points drawn from some
probability distribution, and we use this modeling assumption
to help extrapolate the tails of PDFs and ROC curve. We
select Gaussian and Laplace distributions to model the cases
in which the true distribution has light versus heavy tails,
respectively. Detailed discussion on this modeling can be
found in Section VII-E. Using the simple thresholding rule,
we draw the ROC curves in Fig. 10(b) and (c). The discrimi-
nation capability measured in EER is 10−156 by assuming the
correlation is Gaussian distributed and 10−16 by assuming the
correlation is Laplacian distributed.

We list in Table V the discrimination capability for EXP. 2–
EXP. 4 measured in EERs, and the detailed statistics that
the EERs are calculated from, namely, the sample mean, µ̂i,
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Fig. 9: Setup for experiments conducted in Section V.
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Fig. 10: (a) Estimated PDFs of correlation for EXP. 2 (Sessions 6–10
& iPhone 6), (b) ROC curve by assuming correlation is Gaussian
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TABLE V: Discrimination capability in EERs and corresponding
statistics for images captured in environments with ambient light.

Match (H1) No match (H0) EER 

�̂�𝟏 �̂�𝟏 �̂�𝟏 �̂�𝟎 �̂�𝟎 �̂�𝟎 Gau. Lap. 

EXP. 2 0.557 0.011 122.8 −0.002 0.010 129.5 10−156 10−16

EXP. 3 0.532 0.015 97.4 −0.004 0.011 113.4 10−94 10−13

EXP. 4 0.528 0.012 106.4 −0.004 0.012 103.9 10−109 10−13

the sample standard deviation, σ̂i, the maximum-likelihood
estimates for the rate parameter of the Laplacian distribution,
λ̂i. As revealed by Table V, the authentication performances
are similar with different strength levels in ambient lighting
and with different capturing devices (iPhones 6 and 6s). The
high authentication accuracy and the flexible image acquisition
procedure make the proposed method a promising technology
to be deployed in a practical working environment. In addition
to the above authentication performances that are measured for
one acquisition condition per experiment, it is also beneficial in
future work to measure the performance in a single experiment
containing a variety of practical acquisition conditions.

3) Mobile Cameras of Other Brands: The investigation in
this section has mainly used the cameras of the iPhone series
for exploring the possibility of estimating the normal vector
field of a paper surface. We also carried out experiments using
mobile cameras of other brands such as Samsung Galaxy
Alpha. After obtaining the estimated normal vector field, we
correlated the x- or y-component with the reference norm
maps provided by scanners. The sample mean of correlation
for matched cases (H1) is around 0.23 with similar sample
variance as in the experiments for iPhones. The smaller mean
value compared to that of the iPhone cameras, 0.53, may be
due to the fact that the flash of Samsung Galaxy Alpha is
not so bright as those of iPhone cameras. The authentication
performance measured in EER ranges from 10−22 to 10−6.
The EER results suggest satisfactory performances by the
proposed method, and an effective decision strategy is to adjust
the decision thresholds differently for Samsung Galaxy Alpha
and for iPhone cameras considering their different PDFs of
correlation under H1.
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E. Comparison with Prior Work

In Table VI, we summarize the performances of the pro-
posed methods and prior art as discussed in the previous
sections of the paper. Our proposed image-based method
using a mobile camera with flash has similar performance as
the work in [6] that uses an industrial camera and a semi-
controlled light, as we created a semi-controlled light using
flash and captured the test and reference images at the same
position relative to the physical patch. The proposed image-
based method outperforms the method in [8] that uses robust
point features, suggesting that a favorable lighting condition
is a more important factor than a robust image processing
technique.

Inspired by the success of various methods designed to use
controlled lighting (such as the method proposed in Section IV
and the work in [6]) or inherently used controlled lighting [5],
we have explored a semi-controlled lighting condition with the
help of the flash of mobile cameras. The proposed norm map-
based method significantly outperforms all image appearance-
based methods. Although it performs slightly worse than the
case using the scanner as the acquisition device [5], the
flexibility of the mobile device modality makes the proposed
method more practical for ubiquitous deployment such as
counterfeiting detection by end consumers.

VI. PERTURBATION ANALYSIS ON DISCRIMINABILITY

This section analyzes the performance of the method pro-
posed in the previous section under perturbations. We do not
consider controllable factors that can potentially be taken care
of at the service provider side, such as the number of norm
maps used as references, and whether or not lens distortion
should be compensated on the query images. Instead, we focus
on the factors that are uncontrollable, such as the inaccuracy
of the estimated camera locations, and the factors that may
increase the burden on the users in the verification process,
such as the number of flash images that users need to shoot
in each session of verification.

A. Precision of Estimated Lens Location

The incident light direction vi in Eq. (4) is an essential
quantity for estimating the normal vector field. Its value
is directly related to the camera location that may be
imprecisely estimated. In this part, we first quantify the
inaccuracy of the camera location estimate, and then perturb
the camera location when calculating vi to examine how the
authentication performance will be affected.

Inaccurate Camera Location The standard deviation of
location offset indicates how far away the estimated camera
locations are from the true locations in a statistical sense.
The true locations of the camera/lens were manually recorded
while Sessions 4–10 were captured, each containing 20
images. Together with estimated locations calculated from the
projection matrix (connecting the world and image coordinate
systems), the 3-D location offset was obtained. For each
image, the location offset is a vector containing quantities
in x-, y-, and z-directions. The standard deviation for x-,
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Fig. 11: (a) Estimated standard deviation of the correlation σ̂r and
its decomposition σ̂a and σ̂e for correct matches as a function
of inaccuracy of lens location estimate, and (b) estimated mean
correlation with two-sigma wide performance region, (µ̂−σ̂r, µ̂+σ̂r).

y-, and z-directions were 1.86mm, 2.16mm, and 0.84mm,
respectively, when the camera was placed at the height of
about z = 11.4 cm.

Performance Drop Under Perturbation With the knowl-
edge of the amount of inaccuracy of camera location estimates,
we can examine how authentication performance will be
affected by adding a reasonable amount of perturbation. We
chose σx = 2mm, σy = 2mm, and σz = 0.9mm as the unit
standard deviation in each direction, and scaled them by a list
of scalars [0, 0.5, 1, 1.5, 2, 2.5, 3], in which “1” corresponds to
the nominal strength we obtained above. The larger the scalar
is, the stronger the perturbation will be added.

For each perturbation level, a self-contained sub-experiment
was carried out. The sub-experiment was carried out using the
images from Sessions 6–10. For each session, the estimated
camera location would be biased for 20 times by different
location offset vectors that were independently drawn from
the distribution of the current perturbation level. The resulting
5 × 20 correlation values are expected to have an increased
variance due to the additional perturbation.

We analyzed the results of the sub-experiments using a
random effect model [16] in order to reveal quantitatively the
effect on the correlation value due to the additional pertur-
bation and different sessions. The correlation rij obtained in
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TABLE VI: Authentication Performances of the Proposed Methods and Prior Art

Feature
Modality Lighting Flexibility

Performance
Type Detail EER

Image
pixel value Industrial camera, Voloshynovskiy et al. [6] semi-controlled no 10−4

SIFT descriptor Mobile camera, Diephuis et al. [8] uncontrolled yes 10−2

pixel value Mobile camera (proposed in Section IV) semi-controlled no 10−5 to 10−3

Norm
map

seeded hash Scanner, Clarkson et al. [5] fully controlled no 10−130 to 10−15

surface normal direction Mobile camera (proposed Section V) semi-controlled yes 10−109 to 10−13

the jth random trial of the ith session of the sub-experiment
is assumed to be a summation of the mean correlation value
µ (an unknown but fixed parameter), the zero-mean random
effect ai of the ith session, and the remaining error eij at the
perturbation strength level of the current sub-experiment:

rij = µ+ ai + eij , i = 6, · · · , 10,
j = 1, · · · , 20,

(5)

where ai ∼ N(0, σ2
a) and eij ∼ N(0, σ2

e), and they are
assumed to be jointly independent. Note that the variance of
rij is composed of those of ai and eij , namely, σ2

r = σ2
a+σ2

e .
We are interested in the values of the modeling parameters µ,
σa, and σe, and the analytical expressions of the maximum-
likelihood estimators are discussed in textbooks on the random
effect model [16].

We obtained a distinct set of parameter estimates for each
sub-experiment corresponding to a certain perturbation level,
and plotted them with respect to the perturbation level ac-
cordingly. Fig. 11(a) shows a near-constant effect (quantified
by σ̂a) for the session, and an increased effect of perturba-
tion (quantified by σ̂e) as the perturbation level increases.
Fig. 11(b) shows the mean correlation against the perturbation
level with a two-sigma-wide performance region. Both figures
reveal that the resulting increase of perturbation is small
compared to the mean correlation value, with σ̂r < 0.014
when the perturbation strength is at the nominal level, and
σ̂r < 0.024 even when the perturbation strength is 3 times of
the nominal level.

B. Number of Images for Normal Vector Field Estimation
We now consider the effect of the number of available

images on the estimation of the normal vector. Recall in the
main experiment, we used M = 20 images to estimate the
normal vector field, which may not be very user-friendly with
a large number of light flashes in a short period of time. We
varied the number of images from M = 20 down to M = 4,
and carried out a self-contained sub-experiment similar to
those in the last subsection using the images from Sessions
6–10. For each session, 20 subsets of the available images
were selected and their correlation values were examined at
the current perturbation level. The resulting 5×20 correlation
values are expected to have an increased variance due to fewer
images used.

Regarding the selection of the subsets of images, one should
identify whether the available image set contains extremely
“bad” ones towards the estimation of the normal vector and
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Fig. 12: (a) Estimated standard deviation of the correlation σ̂r and
its decomposition σ̂a and σ̂e for correct matches as a function of
number of images for norm map estimation, and (b) estimated mean
correlation with two-sigma wide performance region, (µ̂−σ̂r, µ̂+σ̂r).

correlation, which should be carefully handled in the selection
process. We tried to identify “bad” images using the following
two criteria: i) the fitting error in the model of Eq. (4), and
ii) the correlation improvement when excluding an image. No
“bad” image was identified out of the 20 available images,
and we therefore constructed subsets of images by uniformly
random selections from the indices 1, · · · , 20.

We analyzed the results of the sub-experiments using the
same random effect model as in the last subsection to reveal
quantitatively the effect of having fewer images for the normal
field estimation. We obtained a distinct set of parameter
estimates for each sub-experiment corresponding to a certain
number of images, and plotted them accordingly. Fig. 12(a)
shows, as expected, a constant effect for the session, and an
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increased effect of perturbation as fewer images were used.
The value of σ̂r reaches almost 0.1 when the number of images
used is reduced to 4. Fig. 12(b) shows that the mean correlation
can drop to below 0.2 and the rate of the drop accelerates as the
number of images reduces. Both figures reveal that the number
of images used for norm map estimation can significantly
affect the correlation.

C. Perturbation Factors Combined
The perturbation analyses in the above two subsections

reveal that the number of images used for norm map estimation
dominates the correlation value, compared to other factors
such as the capturing session setup and the accuracy of the
estimated camera location.

We now evaluate the discrimination capability in terms of
EER by considering all possible factors investigated above.
The EER will be plotted against the dominant factor, namely,
the number of images. Such other remaining factors as the
session setup, and the inaccuracy of the estimated camera
location will be taken into consideration by boosting the
overall variance in their respective amount estimated earlier
in this paper.

The two plots in Fig. 13 show the EER as decreasing func-
tions of the number of images under Gaussian and Laplacian
models, respectively. The results show that in order to obtain
an EER of 10−4, one should on average acquire at least 6
flash images if the correlation follows a light-tailed Gaussian
distribution. In contrast, if the correlation follows a heavy-
tailed Laplacian distribution, one should on average acquire at
least 8 flash images. More discussions on modeling the PDFs
of correlation using the Gaussian versus the Laplacian can be
found in Section VII-E.

VII. DISCUSSIONS

A. Interpretation of Norm Map Obtained From Low Resolu-
tion Images

When a camera’s capturing resolution is high enough, the
area covered by each pixel is relatively flat, and the normal
vector assigned to the pixel represents the physical surface
direction of the area. The collection of the normal vectors
therefore serves as a fingerprint for the paper surface.

When the resolution is lower than the aforementioned
scenario, however, is the normal vector still a meaningful
quantity? Let us relate a high-resolution image and its low-
resolution version by a virtual 2-D low-pass filter with coef-
ficients {wi > 0 |

∑N
i=1 wi = 1}, where i is a location index

linearized from a 2-D index pair and N is the number of pixels
covered by the filter. A pixel value u in the low-resolution
image is therefore the weighted sum of N pixels each with
intensity nT

i vi of the high-resolution image, where vi and ni

are the directions of the incident light and normal vector at
the location with index i, respectively. Hence,

u =

N∑
i=1

wi · nT
i vi ≈

(
N∑
i=1

wini

)T

v = n̄Tv (6)

where v is the direction of the incident light for the pixel in
the low-resolution image. The approximation can be justified
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Fig. 13: Discrimination capability in terms of EER taken into
consideration of all factors as a function of number of images for
(a) Gaussian, and (b) Laplacian distributed correlation values.

because, in a small neighborhood, the direction of incident
light is almost constant, i.e., v ≈ vi. The term enclosed in the
parentheses immediately on the RHS of the approximation
sign can be regarded as the reflected intensity in a larger area
with an averaged direction n̄ =

∑N
i=1 wini. That is, the norm

maps estimated from low-resolution images can be considered
as a downsampled norm map using the virtual filter {wi} that
relates the high and low-resolution images.

B. Effect of Motion Blur

Slight panning motion during the capturing process often
results in blurred images. The effect of the panning motion
can be modeled by a linear-spatial invariant filter. In a special
case where the motion blur is the same for all images captured,
the normal vector field will be blurred by the same filter of
the motion blur per the propagation property discussed above
in Section VII-A. A blurred normal vector field may lead to
a lower verification rate. It is interesting to study how fast
the authentication performance will drop as the strength of the
motion blur increases. In a general case where the motion blur
is not consistent for all images captured, the lowpass filtering
effect does not directly propagate to the normal vector field.
In this case, a study on how the motion blur will change the
normal vector field and its ultimate impact can be carried out.
If motion blur turns out to be a major factor in lowering
the authentication performance, one can consider applying
blind deconvolution in the first place for deblurring the images
before using them for authentication purposes.
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Fig. 14: Sample collection of topographic blocks from copy paper
of size 85µm-by-85µm by confocal microscope. The depth unit on
color bar is also µm.

C. Understanding the Physics of Paper Surface Reflection

In this subsection, we use a confocal microscope to
obtain the 3-D structure of a paper surface as a topographic
map. This “ground-truth” map helps us examine the linkage
between the reflected image appearance and the physical
structure of the paper surface.

Normal Vectors From Confocal Microscope We use a
Leica confocal microscope (under the reflection imaging mode
using 488 nm laser light) to obtain a topographic map with a
per-sample resolution of 3µm, 3µm, and 5.7µm in x-, y-
and z-directions, respectively. For the square surface patches
of edge length 2/3 inch digitized to 200 pixels (aka working
pixels), the area covered by each pixel contains about 796
pixels in the topographic map (aka confocal pixels).

We estimate the normal direction for each working pixel
described as follows. Fig. 14 is a sample collection of to-
pographic blocks with each showing the area covered by
one working pixel. Our examination of the whole set reveals
that most blocks were not flat because the scale of fibers is
smaller than the area of a working pixel. Using the result
from Section VII-A, we calculate a surface direction for each
working pixel area by weighted averaging over the directions
of all confocal pixels. Alternatively, we fit a plane to all
confocal pixel locations and use the direction of the plane
as an alternative estimate. These two estimates for the surface
direction agree with each other with a correlation of 0.98,
implying that the physical normal vectors are not sensitive
to different definitions of direction and estimation algorithms,
and are therefore reliable. Hence, the plane estimates are
sufficiently good estimates for normal directions, and are
considered as the physical ground truth in the experiments
followed.

We examine the correlation of norm maps obtained from

TABLE VII: Correlation of Norm Maps with Ground Truth

Pair of Quantities Correlation
Mobile camera vs. confocal (ground truth) 0.19
Scanner vs. confocal (ground truth) 0.28
[Reference]: Mobile camera vs. scanner 0.59

mobile cameras and scanners with respect to the ground truth.
The results are shown in Table VII. The nonzero correlation
values imply that norm maps estimated by the scanner and
mobile camera are indeed related to the ground truth, i.e.,
the physical norm map obtained by the confocal microscope.
However, the correlation values with the ground truth are
low, around 0.2–0.3. This suggests that although the fully
diffuse reflection model provides a surface norm estimation
that is sufficiently discriminative for authentication purposes,
the estimation may not be highly precise at the accuracy level
of confocal microscopes.

Dominant Reflection Type In this part, we study the
relative contributions of diffuse and specular components,
with the help of the physical normal vectors from a
confocal microscope. We first calculate a synthesized diffuse
image Imd(p) = max{0,n(p)Tvi(p)} and specular image
Ims(p) = max{0,vc(p)

Tvr(p)} using known quantities,
without including the common effect of the light strength
at location p. Here, n is the surface normal vector, vi

is the incident light vector, vc is the camera direction
vector, and vr is the specular reflection vector that can
be represented as vr = (2nnT − I)vi. We then regress
20 camera captured images lr(p) against the diffuse
image and specular image, in order to obtain non-negative
weights for diffuse and specular images scaled by the
light strength, {wd · l(k)(p), k = 1, · · · , 20, ∀p} and
{ws · l(k)(p), k = 1, · · · , 20, ∀p}, respectively. Using non-
negative matrix factorization with rank 1, we obtain estimates
for wd and ws up to a multiplicative scalar. The ratio between
the contributions of diffuse and specular components, wd/ws,
is 5.82. This high ratio of nearly six-to-one reaffirms the
diffuse reflection model in this paper, and explains the
excellent authentication performance in prior work [4], [5].

Generative Modeling Using the relative weights of diffuse
and specular components in the reflection model of paper, we
synthesize reflection images and examine their relationship
with the camera-captured images. We again use correlation as
the similarity measure, and carefully remove the macroscopic
trend of spatial intensity in order to avoid correlation inflation.

For 20 pairs of synthetic and camera-captured images, we
observe a statistically significant correlation of 0.13. This
result from generative modeling and the result of Table VII
from discriminative modeling show that it is possible to
connect the physical normal vectors to the surface appearance.
Possible future directions to improve such connection include
examining the role of diffraction, as well as the roles of
transmitted and re-emitted light, as paper is not always fully
opaque.
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D. Robustness of the Norm Map

Practical deployment of the proposed scheme requires un-
derstanding the robustness of the norm map under various
conditions, and designing adaptive authentication algorithms
when necessary. Clarkson et al. [5] conducted tests on scrib-
bling with a pen and printing single-spaced text on around
10% of the test regions. They also tested the water treatment
by using paper dried and ironed after being submerged. Their
experiments demonstrated that the norm map is a robust
feature under these conditions.

More investigations should be carried out on the resilience
against tampering of the paper surface, such as scratching,
folding, and crumpling, and on the reliability of the physical
structure over time. Large-scale tests for papers from different
manufacturers are beneficial to understanding issues that may
arise in the deployment of the proposed technology. Below we
discuss how to achieve resilience against the folding operation.

Resilience Against Folding Paper can be easily folded,
resulting in a change of directions of those surfaces around
the fold lines. In order to maintain a high correlation for
true matches, the following strategies can be applied. The
first strategy masks in correlation calculation those pixels
whose surface directions are affected by folding. This method
is intuitive but relies on the detection and segmentation of
folded regions. As the distortion to the norm map field
due to folding can be viewed as the addition of a slowly
spatially varying trending surface, the second strategy is to
apply detrending methods before calculating the correlation.
For example, highpass filtering can be applied to remove
the global trend. Such a highpass filter should be designed
to properly reject the frequency components of the trending
surface. Alternatively, parametric surfaces can be fitted to
estimate the trending surface, and the resulting residue can
be used to perform correlation. A practical challenge lies in
the selection of a parametric surface that neither overfits nor
underfits.

E. Considerations for Using Statistical Methods for Inference

In practice, the theoretical PDFs, fρ̂|H0
(ρ̂) and fρ̂|H1

(ρ̂),
as well as the performance metrics, PD(τ), PF (τ), ROC,
and EER derived from them, are not known a priori, and
need to be estimated from the practical data obtained from
experiments. One can construct normalized histograms or
empirical probability mass functions (PMFs) for H0 and H1

as estimates for the true PDFs, and use the resulting PMFs
to calculate the performance metrics. This approach using the
real data can give estimates that are close to the true PDFs
especially when the sample size is large. However, using PMFs
as the estimates for PDFs leads to piecewise ROC curves and
imprecise EER estimates, and the lack of distribution data in
tails requires an extremely large sample size to reveal the true
performances around the two tail regions of the ROC curve.
For example, for a 50-image dataset containing

(
50
2

)
= 1, 225

possible pairs of images for verification, the smallest possible
estimates for PM and PF are 1/50 and 1/1225, respectively,

which may not precisely reflect the performance of the system
if the achievable rates are much smaller than 1/1225.

To alleviate the limitations of using the empirical PMFs
for inferences, we can incorporate more modeling flavors
by assuming the theoretical PDFs fρ̂|H0

(ρ̂) and fρ̂|H1
(ρ̂)

follow some commonly seen distributions such as Gaussian
and Laplacian. Adding this additional assumption has the
advantage that the tails of PDFs and ROC can be better
extrapolated, and EER can be calculated as a deterministic
function of moments such as the mean and the variance. One
should note that the accuracy of the extrapolated tails depends
heavily on the assumption that the data would match with the
assumed distribution. As sample points for tails are usually
lacking for samples of small size, it is reasonable to try a
heavy-tailed distribution (such as Laplacian) to infer the lower
performance bound, and to try a light-tailed distribution (such
as Gaussian) to infer the upper performance bound. As can be
recalled, we have calculated in Section V-D such performance
bounds for both ROC curves and EERs.

VIII. CONCLUSION

In this paper, we have investigated intrinsic microscopic
features of the paper surface for authentication purposes. We
have shown that it is possible to use the cameras and built-in
flash of mobile devices to estimate the normal vector field of
paper surfaces. Perturbation analysis shows that the proposed
method is robust against inaccurate estimates of camera
locations, and using 6 to 8 images can achieve a matching
accuracy of 10−4 in EER under a lab-controlled ambient light
environment. This finding can relax the restricted imaging
setup in prior art, and enable paper authentication under a
more casual, ubiquitous setting with a mobile imaging device.
The proposed technique may facilitate duplicate detection
of important and/or valuable documents such as IDs, and
facilitate counterfeit mitigation of merchandise via detection
of duplicated labels and packages.
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