
APPENDIX

Using single column to estimate parameters

Let us define a column of smooth native image content as x(k) ∈
RN×1, and an embedding ENF signal as e, where

e(i) = Ag cos

(
2π

fg

frow
· i+ φg

)
. (2)

We define pg = [Ag, fg, φg]
T to be a vector of the ground truth

parameters. The corrupted sensing signal is therefore y = x(k) + e.
We set up a cost function to estimate p as follows:

Jk(p) = entropy
(

hist
[{
x(k)(i) + r(i;pg,p)

}N
i=1

])
(3a)

= entropy
(

hist
[
x(k) + r(pg,p)

])
, (3b)

where r(i;pg,p) = e(i) − A cos
(
2π f

frow
· i+ φ

)
. We denote

p̂(x(k)) as a numerical suboptimal solution to the optimization prob-
lem

min
p
Jk(p). (4)

By taking into consideration the randomness of the image, the sub-
optimality of the numerical algorithm for finding the optimal solu-
tion, we model p̂(x(k)) as a random vector with a small bias b and
a positive definite variance-covariance matrix Σ, namely,

E
[
p̂(x(k))

]
= pg + b, VarCov

(
p̂(x(k))

)
= Σ. (5)

Using multiple columns to improve the accuracy of the estima-
tion

We use a random sample (x(1), · · · ,x(K)) to improve the accuracy

of the estimation. We use p̂
(
{x(k)}Kk=1

)
to denote a numerical

suboptimal solution to the multi-column optimization problem

min
p

K∑
k=1

Jk(p). (6)

We conduct Taylor-series expansion around p̂(x(k)) for Jk(p), and
obtain

Jk(p) = Jk
(
p̂(x(k))

)
+
[
p− p̂(x(k))

]T
∇Jk

(
p̂(x(k))

)
+

1

2

[
p− p̂(x(k))

]T
∇2Jk

[
p− p̂(x(k))

]
, (7)

where ∇2Jk is a Hessian matrix whose individual components are
2nd-order partial derivatives evaluated near p̂(x(k)). We further
assume Jk(·) is continuous hence∇2Jk is a symmetric matrix.

Substituting the Taylor expanded cost function for each column
in (7) into the multi-column cost function in (6), and by setting the
gradient with respect to p to zero, we obtain the optimal analytical

solution to (6) as follows:

p̂
(
{x(k)}Kk=1

)
=

(
K∑
k=1

∇2Jk

)−1{ K∑
k=1

[
∇2Jkp̂(x

(k))−∇Jk
(
p̂(x(k))

)]}
(8a)

=

K∑
k=1

Wk p̂(x(k))−

(
K∑
k=1

∇2Jk

)−1( K∑
k=1

∇Jk

)
(8b)

≈
K∑
k=1

Wk p̂(x(k)), (8c)

where Wk =
(∑K

k=1∇
2Jk
)−1

∇2Jk. The sample average of gra-
dients in (8b) converges to 0 in distribution as K increases. Hence,

E
[
p̂
(
{x(k)}Kk=1

)]
≈ pg + b, (9)

VarCov
(
p̂
(
{x(k)}Kk=1

))
≈

K∑
k=1

Wk Σ WT
k . (10)

The above results reveal that by using K columns, the estimator
has a significantly reduced variance and a similar bias as the single
column case.

In the 1-d case, the variance formula is degenerated to Var(p̂) ≈(∑K
k=1 w

2
k

)
σ2. When the weight vector is uniform, i.e., wi = 1

K
,

the best variance reduction is achived, i.e., Var(p̂) ≈ σ2/K.
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