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APPENDIX

Using single column to estimate parameters

Let us define a column of smooth native image content as x®) ¢
RY*! and an embedding ENF signal as e, where

e(i) = Ag COS( z+¢$). (2)
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We define p; = [Ag, fo, ¢e]” to be a vector of the ground truth
parameters. The corrupted sensing signal is therefore y = x® 1 e,
We set up a cost function to estimate p as follows:

Ji(p) = entropy (hist {{ @) +r(i ;pg,p)}LD (3a)

= entropy (hist [x““) + r(pg, p)D , (3b)
where 7(i; pe, p) = e(i) — Acos (271' i+ ng) We denote

p(x““) ) as a numerical suboptimal solution to the optimization prob-
lem

min Ji (p). €
P

By taking into consideration the randomness of the image, the sub-
optimality of the numerical algorithm for finding the optimal solu-
tion, we model f)(x(k>) as a random vector with a small bias b and
a positive definite variance-covariance matrix 3, namely,

E [f)(x(k))} =pg+b, VarCov (f)(x“”)) =3. ®)

Using multiple columns to improve the accuracy of the estima-
tion

We use a random sample (x(l), s xE )) to improve the accuracy
of the estimation. We use p ({x(k>}f=1) to denote a numerical

suboptimal solution to the multi-column optimization problem
K
min J . 6
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We conduct Taylor-series expansion around p(x*)) for Ji (p), and

obtain

Jem) = J (B + [~ p)] " Vi (b))
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where V2.J, is a Hessian matrix whose individual components are
2nd-order partial derivatives evaluated near p(x™*). We further
assume Jx(-) is continuous hence V2.Jj, is a symmetric matrix.

Substituting the Taylor expanded cost function for each column
in (7) into the multi-column cost function in (6), and by setting the
gradient with respect to p to zero, we obtain the optimal analytical

solution to (6) as follows:
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where Wy, = (Zszl VQJk) V2 Jy. The sample average of gra-

dients in (8b) converges to O in distribution as K increases. Hence,

E[b (x4 | = pet b, ©)

VarCov (f) ({x<k)}kK:1)) ~ iwk swWI. (10
k=1

The above results reveal that by using K columns, the estimator
has a significantly reduced variance and a similar bias as the single
column case.

In the 1-d case, the variance formula is degenerated to Var(p) =
(Ef:l wi) o2. When the weight vector is uniform, i.e., w; = %,

the best variance reduction is achived, i.e., Var(p) ~ o2 /K.




