
Enhanced Geometric Reflection Models for Paper Surface Based Authentication

Runze Liu1, Chau-Wai Wong1, Min Wu2

{rliu10, chauwai.wong}@ncsu.edu; minwu@umd.edu
1North Carolina State University, USA, 2University of Maryland, College Park, USA

Abstract

Paper under the microscopic view has a rough surface
formed by intertwisted wood fibers. Such roughness is
unique on a specific location of the paper and is almost im-
possible to duplicate. Previous work has shown that com-
modity scanners and cameras are capable of capturing such
intrinsic roughness in term of surface normal vectors for se-
curity and forensics applications. In this paper, we exam-
ine several candidate mathematical models for camera cap-
tured images of paper surfaces and compare the modeling
accuracies with reference to the measurement by the confo-
cal microscopy. Experimental results show that the model
with distinct intensity bias for images captured from differ-
ent viewpoints can provide the closest result to the confocal
measurement. We discover that high-frequency subbands of
reconstructed 3D surfaces are more powerful than the norm
map in describing the uniqueness of a physical surface. We
show through a practical paper surface based authentica-
tion system that incorporating these findings can improve
the discrimination performance.

1. Introduction
Paper surfaces under the microscopic view has fuzzy

random appearance caused by inter-twisted wood fibers
[1–3, 5, 6, 9, 10, 15, 17–19]. Such randomness is intrinsic
and physically unclonable, which makes the paper surface
an ideal candidate for anti-counterfeiting applications. Us-
ing the microscopic roughness of surfaces, important docu-
ments, concert tickets, and packages can be uniquely iden-
tified without relying on other extrinsic means.

Two major approaches have been taken to exploit the
paper surface for authentication. The first approach [1, 2,
9, 10, 15] directly uses the camera/scanner captured image
or derived features of the image to characterize the paper.
The second approach [3, 18, 19] characterizes the paper us-
ing the normal vector field that quantifies the microscopic
roughness estimated using several images of the patch. The
physical laws of light reflection is employed to derived the
normal vectors at the surface. In this paper, we focus on

the second approach that uses the normal vector field as the
matching feature. Previous work used scanners [3, 18] and
mobile cameras [19] to capture the reflected light and esti-
mate the normal vector fields for authentication.

It is desirable to have a deeper understanding in the mod-
els and algorithms for estimating such physical feature us-
ing mobile devices because of their widespread use. The
estimated normal vector field from the camera-captured im-
ages can achieve satisfactory authentication results [19].
However, the rudimentary model resulted in coarse nor-
mal vector estimates when verified against the confocal mi-
croscopy results [19] . In addition, the understanding of
the normal vector field’s key information toward satisfac-
tory authentication performance is lacking.

In this paper, we propose new mathematical models that
takes into account both the light reflection and the image
acquisition processes to estimate the normal vector field.
We reconstruct 3D microscopic paper surfaces from nor-
mal vector fields and decompose the surfaces into differ-
ent spatial-frequency subbands. The surfaces and their fre-
quency subbands estimated from different models are veri-
fied against those measured from the confocal microscopy.
The proposed models and new features will be tested in a
practical authentication system to measure the performance
gain.

The paper is organized as follows. In Section 2, we re-
view the fundamentals on light reflection and tools that will
be used. In Section 3, we propose new mathematical mod-
els. In Section 4, we examine the discrimination perfor-
mance of the proposed models at different subbands. In
Section 5, we evaluate the performance gain in a practical
engineering system when our findings are incorporated. In
Section 6, we conclude the paper and discuss future work.

2. Background and Preliminaries
2.1. Diffuse Reflection Model and Baseline Method

for Norm Vector Estimation

Under the fully diffuse model, the perceived intensity lr
at location p is modeled as follows [3, 16, 19]:

lr(p) = λ · l(p) · n(p)T v(p), (1)



where n = (nx, ny, nz) is the normal direction of the paper
surface at the microscopic level, v(p) is the incident light
direction arriving at p, l(p) is the strength of the light and λ
characterizes the physical capability of reflecting the light.

The authors of [19] decomposed the perceived intensity
of a paper patch under a point source into two components:
i) a smooth component, named the macroscopic intensity,
with a mild spatial change mainly due to the varying dis-
tance between each pixel and the point source, and ii) a
highly fluctuating component due to the inconsistent ori-
entation of the paper surface at the microscopic level. In
order to estimate the microscopic paper surface that leads
to the fluctuating component, the authors approached the
problem by compensating the effect of the macroscopic in-
tensity, and then reformulating the problem into a linear re-
gression problem.

It was shown that paper’s macroscopic intensity ỹ(p) is
spatially dominated by l(p), namely,

ỹ(p) ≈ E[lr(p)] = λ · l(p) ·mz · vz(p) (2)

where mz is mean of the z component of the normal vec-
tors, vz(p) is the z component of the incident light direction
vector and its value is usually slightly less than 1. With
the equality established in Eq. (2), the term containing the
arriving light intensity λl(p) may be estimated by:

λ̂l(p) = ỹ(p)/(mz · vz(p)). (3)

Substituting Eq. (3) into Eq. (1), the effect of the smooth
component can then be compensated and the remaining
knowns and estimated values are now in a linear form of
the three coordinates of normal vector n(p), namely,

ζ(p) ≈ n(p)T v(p) (4)

where ζ(p) ∆
= lr(p)/λ̂l(p). To solve for the three unknowns

in n(p) and to account for some bias for a particular location
p, at least four equations, which correspond to four camera-
captured photos of the paper surface, are needed. Normal
vectors for different locations are calculated separately and
there is no spatial smoothness assumption imposed. We re-
fer to this baseline model as Model 0.

2.2. 3D Surface Reconstruction From Normals

To reconstruct a 3D surface from a normal vector field,
an intuitive approach is to spatially integrate the gradient
field, but such approach can be sensitive to noise and the
gradient may be non-integrable due to discontinuities of the
surface [8]. We therefore use a method named shapelet pro-
posed in [11] to reconstruct 3D microscopic paper surfaces.
In this method, a set of filters, namely, the gradients of the
shapelets are convolved with gradient field. The filtered ver-
sions of the gradient field are summed up to form the recon-
structed 3D surface. Such reconstruction process is highly
robust to noise.

2.3. Difference-of-Gaussian Representation

The difference-of-Gaussian (DoG) representation [13,
14] of a function on a 2D spatial grid, such as a topograph-
ical map or an image, allows us to investigate the behaviors
of the function around different spatial-frequency subbands.
We decompose the reconstructed topographical map of the
paper surface into different spatial-frequency subbands to
investigate the surface trend and the spatial changes of the
surface. A DoG representation with N levels is constructed
by taking the differences of Gaussian-blurred images. We
define the nth subband as follows:

Ln = Gn −Gn+1, n = 1, ..., N (5)

where G1 is defined to be the original image, GN+1 is de-
fined to be a constant intensity image with the intensity
to be the average intensity of the original image, and Gn,
n = 2, ..., N , is the result of blurring the original image by
a Gaussian filter with the standard deviation σn−1, σ > 1.

2.4. Measure of Discrimination Performance

We use the hypothesis testing framework [12,19] to eval-
uate discrimination performance of a system. The null hy-
pothesis H0 is that the test paper surface does not match the
reference surface, and the alternative hypothesis H1 is that
the test surface matches the reference surface. The Pear-
son’s correlation between the test and the reference surfaces
quantifying the degree of match is used as a test statistic.
We repeatedly collect the correlation values under H0 and
H1, and estimate the probability density functions by cal-
culating the histograms for H0 and H1. Thresholding is
applied to calculate the probability of false alarm, PF , and
the probability of miss detection, PM . The discrimination
capability is measured by the receiver operating character-
istic (ROC) curve and more compactly, by the equal error
rate (EER).

When designing a practical engineering system such as
an authentication system, we can decide whether the paper
surface captured during a test session matches its record in a
reference database using the thresholding rule. We calculate
the correlation, and compare it against a predefined thresh-
old τ that controls the tradeoff between PF and PM . The
surface being examined is only considered authentic when
the correlation is larger than τ .

3. Proposed Models for Estimating Normals
In this paper, we explicitly model factors that may lead

to the bias in intensity such as the ambient illumination and
cameras’ internal brightness/contrast adjustment processes.
We propose models with intercepts in addition to the diffuse
reflection component for estimating the normal vector field.

We first propose a model with distinct intercept for each
image. For image k, k = 1, . . . ,M , the intensity of ac-



quired image at pixel location p is modeled as:

y(k)(p) = λl(k)(p)n(p)T v(p) + β
(k)
0 (p). (6)

We name this model with distinct intercept over k and p
Model 1. To estimate the normal vector n(p), we follow
a similar procedure as in Section 2.1: We first compensate
the smooth component in terms of λl(k)(p)mz and β(k)

0 (p)
and then reformulate the problem into a linear regression
problem. By taking an expectation over the randomness of
the normal vector, we can obtain a macroscopic intensity
field that contain the global factors, i.e., the strength of the
arriving light, the overall intensity bias, and the effect of the
camera direction:

ỹ(k)(p) ≈ E
[
y(k)(p)

]
= λl(k)(p)mzvz(p) + β

(k)
0 (p), (7)

where all symbols are similarly defined as in Section 2.1.
In order to estimate λl(k)(p)mz and β(k)

0 (p), we make an
explicit assumption that these two terms are roughly con-
stant over a small neighborhood of the spatial grid, e.g., a
4-connected set. When the context is clear and the order
of the four neighboring points does not matter, we denote
the four points as p1, . . . , p4 and denote the center point as
p0. Therefore, by explicitly applying the spatial smoothness
constraint, we set up the overdetermined system as follows:ỹ

(k)(p0)
...

ỹ(k)(p4)

 ≈


v

(k)
z (p0) 1

...
...

v
(k)
z (p4) 1

[λl(k)(p0)mz

β
(k)
0 (p0)

]
. (8)

Solving this linear system using least-squares gives us the
estimates for λl(k)(p)mz and β(k)

0 (p). Substituting the es-
timates into Eq. (6), we may setup another system of linear
equations using M images:

 ỹ
(1)(p)

...
ỹ(M)(p)

−

β̂
(1)
0 (p)

...
̂
β
(M)
0 (p)

 ≈

λ̂l(1)(p)v(1)T (p)

...
̂λl(M)(p)v(M)T (p)


nx(p)
ny(p)
nz(p)


(9)

in which the normal vector at location p can be obtained by
least-squares.

We propose a more stringent Model 2 by assuming that
the bias in intensity such as the ambient illumination and
cameras’ internal brightness/contrast adjustment processes
has the same effect for all images, namely, β(1)

0 (p) = ... =

β
(M)
0 (p), so that the model becomes:

y(k)(p) = λl(k)(p)n(p)T v(p) + β0(p). (10)

In this scenario, β0(p) can be jointly estimated using all M

images with the linear system shown as follows:



ỹ(1)(p0)

...
ỹ(1)(p4)

...
ỹ(M)(p0)

...
ỹ(M)(p4)


≈



v(1)z (p0) 0 . . . 0 1

...
...

...
...

v(1)z (p4) 0 . . . 0 1

...
...

0 . . . 0 v(M)
z (p0) 1

...
...

...
...

0 . . . 0 v(M)
z (p4) 1




λl(1)(p0)mz

...
λl(M)(p0)mz

β0(p0)

 .

(11)

Finally, the normal vector at each location p could be es-
timated following the similar procedure as described for
Model 1.

4. Experimental Results

4.1. Dataset and Experimental Setup

For the analysis conducted in this section, we use a pub-
licly available dataset on which the confocal microscopy
related work in Section VII of [19] was conducted. The
dataset contains measurements by a confocal microscope,
and images of a paper surface acquired by two commod-
ity scanners and a mobile camera. Measurements from the
confocal microscope leads to a topographic map with high
spatial resolution. We follow the procedure mentioned in
Section VII.C of [19] that calculates the surface direction
over the squared coverage of each working pixel to generate
a 200-by-200 normal vector field. We use it as the physical
reference since the confocal measurement is precise. For
the scanner acquired images, we estimate norm maps using
the improved method mentioned in Section III.A of [19].

The images of the paper surface by mobile camera were
acquired when a flashlight is activated under a normal in-
door ambient light environment in 20 different camera lo-
cations. In order to evaluate the statistical behaviors of a
hypothetical, representative large dataset (i.e., the statisti-
cal population) using the limited data from the dataset, we
apply the idea of bootstrapping [4, 7] to estimate a set of
resampled normal vector fields. Specifically, we use five
images randomly chosen from the 20 images to estimate
one resampled normal vector field, and repeat such random
sampling with replacement 100 times to prepare for the data
for the subsequent evaluation for models. Five is the second
smallest number needed to estimate a normal vector field.
Although the choice of using five images will reveal pes-
simistic results on the discrimination performance, it rea-
sonably mimics application scenarios that allow capturing
fewer images and are with limited computational resources.

Visualizing norm maps or normal vector fields can re-
veal the surface orientation at each pixel location. For ex-
ample, when examining a neighborhood of pixels, one can
measure the spatial consistency of surface orientations. In
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Figure 1: Top view of a reconstructed surface by (a) mobile
camera with normal vector field estimator derived from Model 1
and (b) confocal microscope. (c) and (d) are SUBBAND #2 of a
zoomed-in region of (a) and (b), respectively, exhibiting higher
similarity than that between (a) and (b). The colorbar illustrates
the relative height of the surface with 84.5 µm as the unit.

comparison, 3D surfaces reconstructed from normal vec-
tor fields are more appealing to human eyes and quantita-
tive understandings can be better achieved using off-the-
shelf image/surface analysis tools. In this paper, we employ
the DoG representation that allows us to separately analyze
the discrimination performance at different frequency sub-
bands.

4.2. Match Using Full and Subbands of 3D Surface

We use shapelet reviewed in Section 2.2 to reconstruct
3D microscopic paper surfaces from normal vector fields.
Fig. 1(a) and Fig. 1(b) show a reconstructed surface by
Model 1 and the reference by the confocal microscope, re-
spectively. The two reconstructed 3D surface appears dif-
ferently at the patch scale: the surface by Model 1 has a
large valley in the middle and high peaks around it, whereas
the confocal surface is relatively flat at the patch scale and
is spatially “busy” with many peaks. The discrepancy in
the surface trend may have masked other features that are
consistent between the two surfaces.

Next, we the decompose the surface into different
spatial-frequency subbands using a DoG representation of
10 levels. High spatial-frequency fluctuations of the micro-
scopic surface are captured in subbands with small index
numbers. Every subband of the surfaces reconstructed from
the camera estimated and from confocal estimated norm
maps is examined.

Fig. 1(c) and Fig. 1(d) show SUBBAND #2 of a zoomed-
in region of the surface by Model 1 and the reference by
the confocal microscope, respectively. The two zoomed-

in regions are similar that both have small valleys in the
middle with peaks around, and there are peaks in the up-
right corners.

To illustrate more clearly how well the subbands from
camera estimation match those from the confocal measure-
ment, we show in Figs. 2(b)–(d) representative slices in the
x direction from SUBBANDS #1 to #3. Fig. 2 reveals that
subbands of high spatial-frequencies have many more over-
lapped peaks and valleys than the “full spectrum” curves
from the original surfaces. This is consistent with what we
observed earlier in this subsection.

We then quantitatively examine at each subband the
correlation between camera estimation and confocal refer-
ence. The bootstrap distributions of the correlation values in
matched cases (H1) and unmatched cases (H0) are shown in
Fig. 3. In matched case, the correlation values are relatively
large, i.e., around 0.3 at high frequency subbands, and for
unmatched cases the correlation values are around 0. The
distributions of correlation values for H0 and H1 are nar-
rower and farther away from each other at higher frequency
subbands, suggesting a better discrimination performance,
i.e., the capability of describing the uniqueness of physi-
cal surfaces. Using the thresholding rule, we plot the ROC
curves for all subbands to reveal the discrimination capabil-
ity under all decision threshold values. EER is annotated on
each ROC curve for easy comparison.

Fig. 4 shows the EER as a function of the subband index
when the correlation values are believed to follow Gaussian
and Laplacian distributions, respectively. Both Models 1
and 2 outperform the baseline model at high frequency sub-
bands. As the index of the subband decreases, the perfor-
mance using Models 1 and 2 increases. Model 1 with EER
at 10−5 (Gaussian) and 10−3 (Laplacian) at the highest fre-
quency subband has the best discrimination capability.

Such observation would naturally trigger a question: Can
the best discrimination performance be improved by com-
bining neighboring frequency band(s) with the highest fre-
quency band? We therefore calculate the cumulative sub-
bands of reconstructed surfaces and evaluate the perfor-
mance. Fig. 5 shows the EER values as a function of ac-
cumulated subband index when the correlation values are
Gaussian and Laplacian, respectively. The plots reveal that
the smallest accumulated subband has the best performance,
indicating combining other subbands to the highest fre-
quency subband cannot improve the performance.

4.3. Match Using Norm Map

For comparison purpose, we also examine the discrim-
ination performance when the norm map is used as the
matching feature. When assuming correlation values are
Gaussian distributed, EER values are around 10−1, 10−4,
and 10−3 for Models 0, 1, and 2, respectively. When assum-
ing correlation values are Laplacian distributed, EER values
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Figure 2: Representative slices in x direction from (a) reconstructed surfaces, (b) SUBBAND #1, i.e., the highest frequency subband,
(c) SUBBAND #2 and (d) SUBBAND #3. High spatial-frequency subbands have many more overlapped peaks and valleys than the “full
spectrum” curves from the original surfaces.

Figure 3: Distributions of correlation values for matched cases (H1) and unmatched cases (H0) at different subbands for Model 1, and
corresponding ROC curves when assuming correlation is Laplacian distributed. Higher spatial-frequency subbands (those with smaller
indices) generally are more powerful in describing the uniqueness of physical surfaces.

are around 10−1, 10−2, and 10−2 for Models 0, 1, and 2,
respectively. We observe that using the highest frequency
subband as the matching feature performs better than using
the norm map by one order of magnitude. This implies that
the highest frequency subband is physically more discrimi-
native than the norm map.

5. Practical Authentication System

In this section, we examine a practical paper surface
based package/label/document authentication system that
uses mobile cameras to capture test images and uses scan-
ners to capture the reference. We did not use confocal mi-
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Figure 4: Discrimination capability in terms of EER as a function
of subband index for (a) Gaussian and (b) Laplacian distributed
correlation values. Two proposed models perform significantly
better than the baseline model at high-frequency subbands.
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Figure 5: Discrimination capability in terms of EER as a function
of accumulated subband index for (a) Gaussian and (b) Laplacian
distributed correlation values. When viewed with Fig. 4, it reveals
that combining other subbands to the highest frequency subband
cannot improve the best performance.

croscope for capturing the reference because it can be diffi-
cult to automate and expensive for commercial applications.
In comparison, scanners are easy to automate and inexpen-
sive, and has been shown in [3, 18, 19] to have satisfactory
performance when used to capture the reference. Cameras
may also be used to capture the reference but may lead to
lower performance.

In order to use reconstructed surfaces for authentication,
we must have the normal vector field that contains the z-
component ready. For precise reference produced by scan-
ners, only x- and y-components are available and these two
quantities are scaled. To estimate the z-component, one
should properly rescale the x- and y-components and use
the relationship nz =

(
1− n2

x − n2
y

)1/2
to obtain the es-

timate. An intuitive approach is to match their probabil-
ity distributions with those of their counterparts from the
normal vector field. In our experiment, we rescale the x-
component by the scanner such that its standard deviation
becomes the same as that by the confocal microscope. The
y-components is scaled similarly.

Section 4 reveals that using high frequency subbands as
the matching feature with improved models could lead to a
better match with the physical measurement. We examine in
this section if they can lead to a better performed engineer-
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Figure 6: Authentication performance in terms of EER as a func-
tion of subband index for (a) Gaussian and (b) Laplacian dis-
tributed correlation values. Horizontal lines correspond to the per-
formance when the normal vector instead of the reconstructed sur-
face is used as the matching feature.

ing system. That is, whether they can outperform systems
using the norm map directly as the discriminative feature.

Fig. 6 shows the EER as a function of the subband index
when the correlation values are believed to follow Gaussian
and Laplacian distributions. Horizontal lines correspond
to the performance when the norm map instead of the re-
constructed surface is used as the feature. The plots reveal
that the discrimination capability has significantly improved
when the practical authentication system uses the improved
models and high-frequency subbands of the reconstructed
surface as the feature. When assuming correlations are
Gaussian distributed, EER values are improved for about
one and four orders of magnitude for Models 1 and 2 at
SUBBAND #1, respectively. In contrast, no improvement is
observed for the baseline model even the highest frequency
subband of the reconstructed surface is used as the match-
ing feature. When assuming correlations are Laplacian dis-
tributed, EER values are also improved at SUBBAND #1 for
the proposed models but not for the baseline model.

6. Conclusion and Future Work
In this paper, we have shown that the improved models

taking into account the effect of ambient lights and cam-
eras’ brightness/contrast adjustment processes can provide
better modeling accuracies with reference to the measure-
ment by the confocal microscopy. We have discovered that
the high-frequency subbands of the reconstructed surface is
a better discriminative feature than the norm map. When
such discovery is incorporated into the design of a practi-
cal engineering system, it can improve the authentication
performance. For future work, we plan to build a large
dataset containing confocal measurements, scanner images,
and camera images with a variety of paper types, camera
models, and acquisition conditions. We also plan to ex-
plore the effect of the specular reflection at the paper sur-
face. Such studies could lead to more accurate models for
camera captured images and may improve the performance
of a practical authentication system.
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