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ABSTRACT

Electric Network Frequency (ENF) analysis is a promising
forensic technique for authenticating digital recordings and
detecting tampering within the recordings. The validity of
ENF analysis heavily relies on high-quality ENF signals ex-
tracted from multimedia recordings. In this paper, we propose
an ENF signal extraction method for rolling shutter acquired
videos using periodic zero-padding. Our analysis shows that
the extracted ENF signals using the proposed method are not
distorted and the component with the highest signal-to-noise
ratio is located at the intrinsic frequency. The experimental
results show that our proposed method can generate more pre-
cise ENF signals than those from the state-of-the-art method.

Index Terms— Electric Network Frequency (ENF) sig-
nal, frequency estimation, multirate analysis, rolling shutter

1. INTRODUCTION

Electric Network Frequency (ENF) analysis is a promising
forensic technique for authenticating digital recordings [1]
and detecting tampering within the recordings [2]. The ENF
is the supply frequency of an electric grid. The supply fre-
quency is not constant, but fluctuates along the time around
its nominal value of 60 Hz in North America or 50 Hz in
most other regions of the world, due to the mismatch between
the demand and the supply within the power network. Since
different nodes within the grid are interconnected, the fluctua-
tions in frequency at different locations of the same grid share
similar patterns. The instantaneous values of ENF over time
are regarded as the ENF signal, which can serve as a natural
time stamp for authenticating multimedia recordings.

The ENF signal can be embedded into audio recordings
via sensing acoustic vibrations or via interfering electromag-
netically in sensing circuits [1]. Studies in [1, 3–6] show that
ENF traces extracted from audio recordings can be used to as-
sess the authenticity of the recordings. Studies in [7, 8] show
that ENF extracted from the audio track of videos can be used
to identify the locations that videos were recorded. The study
in [9] shows that the ENF analysis can be extended beyond the
realm of the forensic science to multimedia signal processing,
e.g., the synchronization of videos without overlapped scenes,
and the alignment of historical audio recordings.

More recent studies revolve around extracting ENF traces
from the visual track of multimedia recordings [10–12]. In-
door lightings, such as fluorescent lights and incandescent
bulbs, vary their light intensity at a frequency twice of that
of the supply voltage, leading to near-invisible flickering in
the illuminated environment. Consequently, cameras under
the indoor illumination environment may capture videos that
contain ENF signals. One of the major concerns encountered
in extracting the embedded ENF signal from visual tracks is
the aliasing effect due to limited sampling rate [10]. Specifi-
cally, when the nominal value of the ENF and the frame rate
are 60 Hz and 30 frames per second (fps), respectively, it is
challenging to extract the aliased ENF component because it
is overlaid with the DC frequency component.

To tackle the issue of the limited sampling rate, the au-
thors in [10, 11] demonstrated that the rolling shutter mecha-
nism, which is traditionally considered detrimental in image
and video analysis, can be exploited to increase the effective
sampling rate. The rolling shutter acquires a video by se-
quentially reading and storing the pixel values of horizontal
lines of each landscape frame. Since successive lines of a
frame are acquired at different time points, the rolling shut-
ter can foster the ENF signal extraction from the visual track
by increasing the effective sampling rate by a factor of the
number of lines [10]. In [11], the authors proposed an extrac-
tion method that directly concatenates the row signals of all
frames by ignoring the idle periods occurred at the end of each
frame. Multirate signal analysis was applied to show that the
extracted signal approximates the desired ENF signal.

In this paper, we conduct a further study on exploiting the
rolling shutter and propose a periodic zero-padding method
for extracting the exact, undistorted ENF signals from the
visual track. The proposed extraction method conducts an
equivalently uniform sampling along the time by returning
zeros during the idle period at the end of each frame. Our
analysis will show that the spectrogram around the frequency
of interest is not distorted and the component with the highest
signal-to-noise ratio is located at the intrinsic frequency.

The rest of the paper is organized as follows. In Section 2,
we describe and analyze the proposed method for ENF signal
extraction from videos. The experimental results are reported
in Section 3 and conclusions are drawn in Section 4.



Fig. 1: Illustration of the sample acquisition process of the periodic
zero-padding method: Rows 1 to L of each frame are sequentially
recorded during the read-out time Tro and the remaining “imaginary”
rows’ outputs are zeros during the idle period Tidle.

2. PROPOSED EXTRACTION METHOD USING
PERIODIC ZERO-PADDING

Rolling Shutter Preliminaries The rolling shutter acquires
each image over the frame period Tc during which each row
of the frame is exposed followed by the idle period Tidle that
no row is captured [13]. The read-out time Tro [14] is defined
as the amount of time required for the rows of a frame to be
generated and is unique for each camera model. The instan-
taneous light intensity is captured by all pixels of the same
row simultaneously. When the foreground is of uniform color
or is removed by motion compensation, the average value of
the pixel values in each row is used as a temporal sample, and
we refer to the concatenation of these temporal samples as the
row signal [13].

In [11], the rolling shutter mechanism was exploited to
extract ENF trace from the visual track. During the frame
period Tc, the rolling shutter can capture M samples to
its capacity, among which only L samples recorded dur-
ing the read-out time Tro will be retained as the rows of
each frame. The remaining M − L samples exposed during
the idle period Tidle will be discarded, where L ≤ M and
Tc = Tro + Tidle. They concatenate L samples into one single
row signal and we refer to this method as the direct concate-
nation method. The rolling shutter’s effective sampling rate
Fs can be defined in the pair of (M,Tc) or (L, Tro) [14] as
Fs = 1/Tc = M/Tc = L/Tro, where Ts is the amount of
time between the start of sampling one row and the start of
sampling the subsequent row. In this case, a perceptual sam-
pling frequency Fps = L/Tc was adopted for the frequency
domain analysis without the need of knowing the value of Tro.

Proposed Method In this paper, we propose a periodic
zero-padding method for extracting ENF signals from the vi-
sual track. Fig. 1 illustrates timing schedule for acquiring the
nonzero samples from row 1 to row L and zero samples from
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Fig. 2: (a) Time-domain illustration of sample acquisition for the
periodic zero-padding method. (b) Equivalent filter bank model with
M -fold downsamplers and upsamplers (L ≤ M).

row L+1 to rowM . Unlike the direct concatenation method,
the estimation of Tro is needed for calculating the value of M
via L · Tc/Tro. We denote the time domain input and output
signals by x(n) and y(n), respectively, as shown in Fig. 2(a).
Out of all M points of the input signal x(n) that corresponds
to one frame, we zero out the last M − L samples that corre-
spond to the idle period and denote the resulting output signal
as y(n). Such input-output relationship can be modeled by
a L-branch filter bank with M -factor downsamplers and up-
samplers and unit delay operators, as shown in Fig. 2(b). The
DTFT of the lth branch signal can be expressed as follows:
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in which asincL (x) = sin(Lx/2)
L sin(x/2) is the aliased sinc function

or Dirichlet function [15]. It is a periodic function that has
zero crossings at integer multiples of 2π

L within one cycle and
its maximum values are located at integer multiples of 2π.
Replacing the normalized angular frequency ω in (2) by 2πF

Fs
,

we obtain the output as a function of the analog frequency F
as follows:

Y (F ;Fs) =

M−1∑
m=0

Am X (F −mFc;Fs), (4)

where g(F ;Fs)
def
= g( 2πFFs

) for g = X and Y . Eq. (4) shows
that Y (F ;Fs) is the weighted sum of X(F ;Fs)’s that are



shifted by integer multiples of the frame rate Fc = 1/Tc.
Y (F ;Fs) has nonzero ENF frequency components at

F = ±Fe +mFc + νFs, (5)

where m, ν ∈ Z and Fe is defined as the doubled frequency
of the nominal ENF. Note that in Eq. (4), the 0th summation
term is the ideal input source signal X(F ;Fs) scaled by A0.
Observe that the shift step Fc = Fs/M , which means that
the shifted copies X(F −mFc;Fs), m = 0, · · · ,M − 1 will
evenly occupy the full sampling range [0, Fs) Hz. The fre-
quency components that used to be aliased under the slow
sampling rate Fc are now well within the range under the
rolling shutter’s effective sampling frequency Fs.

In order to obtain a high quality extracted ENF signal in
terms of the signal-to-noise ratio (SNR), one simple but effec-
tive strategy is to pick the frequency component of the highest
signal strength, out of the M copies AmX(F −mFc;Fs) for
m = 0, · · · ,M − 1. This is because the noise power is a
constant value (L/M)σ2, for all frequency components when
the input signal x(n) is corrupted by additive white Gaus-
sian noise with power σ2. Since |Am| = L

M

∣∣asincL
(
2πm
M

)∣∣,
the set of elements m∗ and k∗ which maximizes the SNR or
equivalently, |Am|, can be found by the following optimiza-
tion problem:

min
m,k∈Z

∣∣∣∣2πmM − 2πk

∣∣∣∣ , (6)

which leads to the solution m∗ = Mk∗. Substituting m∗

into (5), we obtain the frequency components of the strongest
ENF signals as follows:

F(m∗,k∗) = ±Fe +
(
k∗ + ν

)
Fs, (7)

which implies that our proposed method always results in the
strongest ENF signal at Fe within the range of [0, 0.5Fs) Hz.

Due to the space limitation, we skip the proof and directly
provide the analytic form of the positive frequency compo-
nent achieving the highest SNR for the direct concatenation
method as follows:

F(m′∗,k′∗,ν′∗) = Fe + round
(
(Tro − Tc)Fe

)
Fc +

(
k
′∗

+ ν
′∗)
Fps, (8)

where round(x) returns the nearest integer of x. It reveals
that the direct concatenation method needs both Tc and Tro
to determine the location of the shifted frequency compo-
nent with the strongest ENF signal. Table 1 shows the cal-
culated frequencies that achieve the maximum SNR for the
direct concatenation method and our proposed method when
Fe = 120 Hz and Tro = 19.8 ms. The proposed method guar-
antees that the ENF trace with the highest SNR can always be
extracted at the doubled frequency of the nominal ENF, i.e.,
Fe = 120 Hz.

Another advantage of the proposed method over the di-
rect concatenation method is that the Fourier spectrum and

Table 1: Frequency band achieving the maximum SNR.

Case Frame rate
(fps)

Frequency achieving maximum SNR (Hz)
Method in [11] Proposed

1 30.0000 60
1202 23.0062 51

3 16.0032 40

hence the extracted ENF signals are not distorted. Our pro-
posed method has a scaling factor Am that uniformly scales
the magnitude of the ENF signal along the frequency axis,
whereas the direct concatenation method has a scaling func-
tion Am′(F ) [11] that distorts the spectrum along the fre-
quency. However, one should note that such distortion has
a minor impact on the quality of the extracted ENF signal as
the frequency spread of ENF signals is usually narrow.

3. EXTRACTION OF ENF TRACES

Experimental Conditions We conducted experiments us-
ing the back camera of iPhone 6s in an indoor environment
with electric lighting in Raleigh, USA. The videos were ac-
quired by facing the mobile camera toward a white wall,
and we used the read-out time 19.8 ms reported in [16]. We
recorded the power mains signal in parallel and treated it as
the ground-truth ENF signal. To calculate a spectrogram for
the ENF signal, we split the signal into frames of 12 seconds
with 90% overlap. Quadratic interpolation was used to refine
the locations of detected spectral peaks [17].

We calculate the SNR at a frequency of interest, F ,
using the ratio of estimated signal and noise power from
the empirical power spectrum within a small neighborhood
around F . We estimate the noise power Pnoise as the averaged
power within the frequency ranges (F − δ1, F − δ2) and
(F + δ2, F + δ1). We estimate the signal power Psignal by
subtracting the estimate of Pnoise from the peak power spec-
trum value at F . In our experiment, we empirically chose
δ1 = 2 Hz and δ2 = 0.5 Hz.

Results and Discussions Fig. 3 illustrates the spectrogram
of the row signal generated by the proposed periodic zero-
padding method. In this example, the frame rate of the camera
is set to be Fc = 23.0062 fps under the nominal value of ENF
at 60 Hz to verify whether its spectral composition matches
the theoretical prediction. The choice of Fc = 23.0062 fps
is to avoid the mix of DC and ENF components. In the case
of Fe/Fc ∈ Z, e.g., Fe = 120 Hz and Fc = 30 fps, DC and
ENF from different components will overlap. In Fig. 3(a),
we can observe the spectral distribution resulted from the pe-
riodic zero-padding method where the multiple DC compo-
nents appear at intervals of Fc in thick red straps and multiple
copies of ENF signal are in faint red straps. Fig. 3(b) shows a
zoomed-in region around 120 Hz, where we can see the ENF
signals and DC signals appear consistent with the prediction
from our theoretical model in Section 2.



(a) (b)

Fig. 3: (a) A spectrogram for the row signal of Fe = 120 Hz and
Fc = 23.0062 fps generated by the proposed periodic zero-padding
method. The thick straps are DC components, and the faint straps
are the ENF components. (b) Zoomed-in version around 120 Hz.
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Fig. 4: The ENF signals extracted using the periodic zero-padding
method from a static white-wall test video when Fe = 120 Hz
and Fc = 30 fps: [Middle] The ENF signal extracted around
Fe = 120 Hz achieves the highest SNR; [Top & Bottom] The ad-
jacent ENF signals at 150 Hz and 90 Hz, respectively.

Fig. 4 shows extracted ENF signals from different fre-
quencies when the frame rate is 30 fps, a commonly used
sampling rate. The figure reveals that the ENF signal with the
highest SNR is achieved at 120 Hz, and the top and bottom
plots extracted from the nearest bands at 150 Hz and 90 Hz
have lower SNRs. The observation is consistent with the pre-
diction from our theoretical result. It is interesting to note that
DC components do not have a strong negative effect on the ac-
curacy of the frequency estimation when overlapping with the
ENF components. We plan to investigate the characteristics
of the DC components in future work.

To quantitatively compare the extracted ENF signal
around 120 Hz of Fig. 4 to the ground-truth ENF signal, we
use three matching criteria: the normalized cross-correlation
(NCC), the mean squared deviation (MSD), and the mean
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Fig. 5: The ENF trace (black solid) from the maximum SNR of
Fig. 4 and its ground-truth ENF signal from power (red dotted). The
black ENF trace was properly shifted and scaled to be aligned with
the red ENF trace.

Table 2: Comparison of the proposed method with prior art under
the low SNR conditions.

SNR (dB) Average of correlations
p-valueMethod in [11] Proposed

−10 0.959 0.951 0.20
−20 0.858 0.892 0.01**
−23 0.754 0.839 0.18
−25 0.459 0.551 0.01**

absolute deviation (MAD). The calculated NCC, MSD, and
MAD with respect to the reference signal are shown in Fig. 5.
Based on the matching criteria, we confirm that the ENF sig-
nal estimate by the periodic zero-padding method is similar
to the power reference ENF signal.

To compare the performance of our proposed method with
the direct concatenation method [11], we extract ENF signals
using the two methods and split each signal into 6 segments to
obtain multiple correlation coefficients. We then do a t-test to
see if the group means of the correlation coefficients are sig-
nificantly different in the statistical sense. Table 2 reveals that
our proposed method is statistically better than the direct con-
catenation method at−20 dB and−25 dB, and comparable at
−10 dB and −23 dB.

4. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an alternative method for ex-
tracting ENF signals by continuing sampling during the idle
period. We have analyzed the proposed method using the
multirate filter bank model, which shows that the extracted
ENF signals are not distorted and the highest SNR compo-
nent is located at the intrinsic frequency. The experimental
results support the theoretical analysis and show that our pro-
posed method can generate more precise ENF signals than
the state-of-the-art method. Future work would be conducting
extensive evaluations on a large dataset that contains different
camera models and SNR conditions.
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