
Efficient Video Data Structure and Compression Scheme
for Fabric Wicking Phenomenon Studies

Chau-Wai Wong
Electrical and Computer Engineering

North Carolina State University, Raleigh, USA
chauwai.wong@ncsu.edu

Abstract

The physiological comfortableness of clothes is heavily
attributed to the wicking phenomenon of fabrics. We have
been working with textile scientists to automate a newly de-
signed video-based test method that targets at analyzing the
yarn-level wicking behaviors of fabrics. To access yarn-
level wicking information, we need an efficient video data
structure that allows the retrieval of the color information
at each pixel along the time. In this paper, we propose using
the volume of blocks as the basic storage unit rather than
using the frame as most off-the-shelf video codecs do. The
proposed data structure allows quick retrieval of time series
data and can achieve a balance between the time overhead
and memory overhead. We also propose a compression
scheme specially designed for the proposed data structure.
Experimental results show that the proposed data structure
and compression scheme can store the video information in
manageable file size while providing visual quality at a cus-
tomized level.1

1. Introduction
The physiological comfortableness of clothes is heavily

attributed to the wicking phenomenon of fabrics. Two dom-
inant factors of the wicking phenomenon are how fast and
in what pattern the sweat or liquid transfers within fabrics.
Traditionally, textile scientists rely on such wicking test
methods as the vertical wicking test [1] and the gravimet-
ric absorbency test [2] to assess the wicking performance
of fabrics. However, these tests were not designed to reveal
the yarn-level wicking behaviors and therefore are not ad-
equate for assessing the performance of some specially de-
signed fabrics made up of yarns of different wicking prop-
erties. Figure 1 shows four key frames of a video recorded
for studying the wicking phenomenon for a blended fabric
made up of hydrophobic and hydrophilic yarns. We call
these videos wicking-performance videos.

1This version was updated on December 6, 2019. The original paper
was published in 2019 IEEE Conference on Multimedia Information Pro-
cessing and Retrieval (MIPR2019).

Figure 1: Four frames of a wicking-performance video for a fabric
made up of yarns of different wicking properties.

Our colleagues from the textile college have designed a
new wicking test method that targets at analyzing the yarn-
level wicking behaviors. Apart from the innovation of the
new method offered to the textile community, our interdis-
ciplinary team agrees that it is beneficial to automate the
detection of yarn-level wicking behaviors. Specifically, we
have developed a preliminary wetting event timestamp de-
tection algorithm [3] that works at the level of the indi-
vidual time series of each pixel location of the wicking-
performance video. By treating neighboring pixels inde-
pendently, our detection algorithm avoids making mistakes
that are commonly seen in algorithms exploiting spatial cor-
relation for decision making. Our algorithm can precisely
infer the yarn-level wicking behaviors even if neighboring
pixels belong to different yarns.

To access the fabric video data at a specific pixel loca-
tion along the time for the subsequent wetting event times-
tamp detection, one needs to decode every frame of the
video and discard the color information at all locations
other than the location of interest. If the video is of a
resolution 1920 × 1080, the overhead in time is 2 mil-
lion (= 1920 × 1080) to 1. If memory usage is not a re-
striction, loading a 3-minute video will require 31 GBytes
(= 1920×1080 pixels/frame×30 frames/sec×180 secs×
3 bytes per pixel) memory, which is obviously nonscalable.

In this paper, we propose an efficient data structure for
videos acquired for studying the wicking phenomenon of
fabrics. In comparison to videos encoded by off-the-shelf
video codecs that treat the frame as the basic storage unit,
we propose using the volume of blocks of size N -by-N as
the basic storage unit, where N is much smaller than the di-
mension of video frames. Using the proposed method, we



…

……

…

…

…

……

…
…

…

1

2
3

L

1 W

W+1 2W

HW(H−1)W+1 

(a) (b)

x

y
t

Figure 2: Comparison of (a) data structure of videos encoded by
off-the-shelf codecs, and (b) proposed data structure. The basic
storage unit for (a) is the frame and for (b) is the volume of blocks.
Labeled numbers are indices of basic storage units.

can achieve a balance between the time overhead and mem-
ory overhead when converting videos in an off-the-shelf
format into the data structure designed for wicking perfor-
mance studies. We also propose a compression scheme spe-
cially designed for the proposed data structure so that the
video data can be stored in manageable file size while the
visual quality can be maintained at a customized level.

2. Proposed Data Structure for Wicking Videos
2.1. Pros and Cons of Alternative Designs

Videos compressed by off-the-shelf codecs cannot be ef-
ficiently used for time series data extraction. Modern video
codecs use the frame as the basic storage unit as shown in
Figure 2(a). In order to extract the color information at a
particular pixel location throughout the whole duration of
the video, almost the whole video needs to be decoded. A
negligible saving can be achieved by decoding only the spe-
cific block that contains the pixel of interest for those B
frames that are not referenced by other frames. Below, we
examine the pros and cons of three strategies for time series
data extraction.

The first approach is to keep only the RGB values at the
required location and discard the color information of other
locations. As the frames are sequentially decoded following
the picture order count (POC) within each group of pictures
(GOP), the whole time series of RGB values will be avail-
able and stored to the hard disk once all GOPs are decoded.
If the video is of a resolution 1920× 1080, the overhead in
time is about 2 million to 1, which is highly nondesirable.

The second approach improves the first one by not dis-
carding information for other locations but appending the
color data for each location to the file indexed by its spatial
location. Using this approach, two million files are to be
created on a hard disk and each of them will be appended
the newest RGB color information once for each frame.
This approach can create harsh working conditions for the
hard disk by populating the file system with two million

Table 1: Complexity for different approaches for dumping time
series for every pixel location. Complexity for decoder excluded.

Approach Peak memory
usage (×3 bytes)

Pixel loading
overhead

I/O for out-
put

#1 WH WH5 Low
#2 WH 1 High5

#3 WHL5 1 Low
Proposed WH` 1 to N2 Low
5 indicates that the approach is extremely inefficient in this aspect.

entries of the filenames and their respective pointers. It re-
quires I/O operations in reading and writing for at least two
million multiplies the number of frames of the video. To
make the matter worse, as the hard disk alternating among
different pixels, the data for a particular pixel will be stored
in an interleaved way, which makes the retrieval of the time
series highly inefficient.

The third approach tries to improve the previous two
by first loading the whole video in memory and then sav-
ing a time series for every pixel location. However, stor-
ing a 3-min decoded video will require 31 GBytes memory.
This is not only nonscalable in time, but also far from any
recommended software engineering practice to consume 31
GBytes without absolute necessity.

We summarize the aforementioned approaches in three
aspects in Table 1 where the frame size is W -by-H and the
total number of frames is L. When the three approaches are
compared side-by-side, it is revealed that each approach ex-
cels in two aspects but can be extremely inefficient in the re-
maining aspect. Our aim is to design a simple-to-implement
data structure that is relatively efficient in all aspects.

2.2. Proposed Efficient Video Data Structure
We propose an efficient data structure by combining the

advantages of the three aforementioned approaches. We
start with Approach 3 by holding in memory only a short
segment of the video to avoid memory overuse. In case
each segment is of ` = 120 frames long, the peak memory
usage is only 712 MBytes (= 1920 × 1080 pixels/frame ×
120 frames × 3 bytes per pixel). We then apply the idea of
Approach 2 by not discarding any information in the mem-
ory: we save the pixels the first time they are decoded. We
also try to be considerate about the file system’s capability
by not creating a separate file for each pixel. Instead, we cut
the video frame into square blocks of size N -by-N , where
N can be 32, 64, etc., and append a time series of collocated
blocks into a file indexed by the block location relative to
the frame. Once all data of the current segment have been
saved to the hard disk, we repeat the above procedure for the
next segment. At the completion of the iteration, there are
only (1920/N) × (1080/N) data files managed by the file
system. In this proposed method, we consider the time se-
ries/volume of blocks as the basic storage unit. Figure 2(b)
illustrates how the proposed data structure is different from
that of an off-the-shelf encoded video shown in Figure 2(a).



When a time series at a specific location is inquired, one
should load the volume of blocks that covers the requested
location. By going through all the blocks along the time, the
time series of the requested location can be reconstructed.
Since we store neighboring pixels together as a block, the
overhead in loading time isN2 when loading the time series
of only one location. Such overhead may be reduced by
simultaneously inquiring all time series located within the
same block.

To design the data structure within each file of the vol-
ume of blocks, we choose to store it in a block-by-block
way instead of in a series-by-series way. This data struc-
ture can facilitate further data compression because we ob-
serve that the redundancy along the time is stronger than
that spatially. Consider a typical fabric video acquired by
a still camera. The scene i) contains almost no motion ex-
cept due to minor camera shaking, ii) has intensity changes
only at the frame level due to the contrast adjustment; and
iii) has some acquisition noise. This means that all frames
are roughly aligned and visually similar, and therefore have
strong redundancy in time. On the contrary, if one picks a
pair of two pixel locations from a block, it is possible that
they correspond to yarns at different wicking stages, and
therefore, has very different patterns in intensity. Arrang-
ing data block-by-block within each file could make data
compression more efficient.

3. Data Structure Compression

Once the wicking video is organized into the proposed
data structure, i.e., the whole volume of full-size frames are
broken into shorter volumes of blocks, each short volume
can be further compressed to save the storage. Although
one can take an off-the-shelf video encoder to compress the
volumes of blocks, it may be overkill as the fabric video has
almost still scene and the information needs to be specially
encoded are the frame-level intensity change and various
types of noises.

We propose a simple regression-based encoding method
that makes use of off-the-shelf lossy image compression
tool, e.g., JPEG, and lossless image/text compression tools,
e.g., PNG, LZMA, Deflate to address the need for vol-
ume compression. The block diagram of the proposed en-
coder is shown in Figure 3. Specifically, we exploit the re-
dundancy over a short period of time as discussed in Sec-
tion 2.2: the scene of wicking video is almost still except
the color may be scaled and biased at the frame level. We
propose to use the averaged block of the current volume,
xave = 1

K

∑K
k=1 yk, as the reference to predict each block

yk ∈ RN×N , where K is the number of blocks/frames in
this volume. Note that in order to avoid the mismatch be-
tween the encoder and decoder, any reference to be used for
prediction should pass through a lossy reconstruction chan-
nel. In our example, we use JPEG to reduce the file size of

Volume 

of blocks 

𝐲𝑘 𝑘=1
𝐾

Time 

average
JPEG(∙) JPEG−1(∙)

Linear 

predictor

Quanti-

zation

Lossless/entropy coder

𝐱ave 𝐛ave
𝐱ave−recon

𝐫𝑖 𝑖=1
𝐾

𝛃𝑖 𝑖=1

𝐾
𝐫𝑖 𝑖=1

𝐾

To decoder

Figure 3: The block diagram of the compression scheme for the
proposed video data structure.

the reference block as much as possible. The JPEG binary
output data bave and reconstructed averaged block xave-recon
are shown as follows:

bave = JPEG(xave), xave-recon = JPEG−1(bave), (1)

where JPEG(·) and JPEG−1(·) are JPEG encoders and de-
coders, respectively. The relationship between the ith block
yi and reconstructed averaged block xave-recon are modeled
as follows:

yi = βi1xave-recon + βi0 + ei, i = 1, · · · ,K, (2)

where βi1 and βi0 are unknown modeling parameters that
corresponds to scaling and bias, and ei is a noise vector with
E[ei] = 0. The parameters can be estimated using least-
squares, namely, {(β̂i0, β̂i1)T = (XTX)−1XTyi}Ki=1,
where X = (1,xave-recon) and 1 is an all-one vector. Note
the computational advantage of the regression approach: for
each volume, (XTX)−1XT needs to be calculated only
once. Hence, the residue of the ith block, ri, after the block
prediction is

ri = yi − β̂i1xave-recon − β̂i0 =
(
I−X(XTX)−1XT )yi. (3)

To summarize, for lossless encoding, the following infor-
mation should be sent to the decoder: i) the JPEG bi-
nary output data, bave, ii) the block prediction coefficients,
{(β̂i0, β̂i1)T }Ki=1, and iii) the block residues {ri}Ki=1. Note
that the coefficients and residues should be sent in losslessly
compressed formats.

One can choose to further reduce the file size using lossy
compression at the cost of the introducing reconstruction
error. Given that the block residues dominate the encoded
bitstream in size, doing lossy coding on them should pro-
vide the most reduction in file size. We apply a uniform
quantizer with quantization step size q to each element in
the residue. The codeword for entropy coding/lossless com-
pression r̃i and the reconstructed residue r̂i are defined as

r̃i = round(ri/q), and r̂i = qr̃i. (4)

4. Experimental Results and Discussions
We use for experiments four wicking-performance

videos of the length 315, 127, 142, and 138 seconds, re-
spectively. The videos were taken by iPhone X fixed on a
tripod and encoded using H.265/HEVC. Their original res-
olution was 1920 × 1088 and they were downsampled by
a factor of 4 to avoid oversampling and to boost the signal



0 1 2 3 4 5
Size (bits per pixel)

40

42

44

46

48

P
S

N
R

 (
dB

)

(a)

0 1 2 3 4 5
Size (bits per pixel)

38

40

42

44

46

48

P
S

N
R

 (
dB

)

(b)

0 1 2 3 4 5
Size (bits per pixel)

38

40

42

44

46

48

P
S

N
R

 (
dB

)

(c)

0 1 2 3 4 5
Size (bits per pixel)

38

40

42

44

46

48

P
S

N
R

 (
dB

)

(d)
Figure 4: Rate-distortion curves for videos (a) #38, (b) #39,
(c) #40, and (d) #41. The quantization step size q used from left to
right are 100, 50, 35, 25, 15, 7, and 4. The clustered points at the
bottom left corners imply that most residues are smaller than 25.

strength. Figure 1 shows four key frames of the 127-sec
video in which a needle was injecting pink liquid to one
yarn, and the liquid subsequently transferred within yarns
and between yarns. It is visible from all four videos that
the injection needle may slightly vibrate. Fabrics after ab-
sorbing the liquid may also have some nonrigid distortion
in shape. The camera may have minor shake, and the focus
of the camera may blur from time to time. At the beginning
and toward the end of the video, there can exist significant
camera motions.

We developed the proposed video data structure and
compression algorithm in Matlab. We used Matlab’s built-
in JPEG compression algorithm for encoding the reference
blocks. We used 7z’s LZMA implementation to losslessly
encode the quantized residues and prediction coefficients.
We set the length of each volume of blocks to ` = 240.
We measure the performance of the rate-distortion behav-
ior of the proposed scheme using the peak signal-to-noise
ratio (PSNR) and the file size in bits per pixel using quan-
tization step size q ∈ {4, 7, 15, 25, 35, 50, 100} that has the
same unit as the pixel intensity ranging from 0 to 255. The
larger the q is, the more distortion the reconstructed video
will be. Figure 4 reveals that when the quantizer is finer, i.e.,
q is small, PSNR can easily exceed 40 dB. When the quan-
tizer is coarser, i.e., q is large, PSNR drops until it reaches a
“lower bound,” as is shown by the clustered rate-distortion
operational points at the bottom left corners of the plots.
This implies that most residues are smaller than q = 25,
and the quality of the reconstructed video is mainly con-
trolled by the quality of reference blocks and the predictor
coefficients. It is revealed by the plots that a 24 bits per
pixel video may be represented by much less than 1 bit per
pixel while maintaining the PSNR above 38 dB.

We are also interested in the size of the compressed files

4 7 15 25 35 50 100
Quantization step q in (0,255)

0

20

40

60

80

100

P
er

ce
nt

ag
e 

(%
)

Quant Residues
Ref Blocks
Pred Coeffs

(a)

4 7 15 25 35 50 100
Quantization step q in (0,255)

100

102

F
ile

 s
iz

e 
(M

B
yt

e)

Quant Residues
Ref Blocks
Pred Coeffs

(b)
Figure 5: (a) Relative and (b) absolute size as a function of the
quantization step q for video #39. Both absolute and percentage
size of quantized residues reduce as quantizer becomes coarser.

at different lossy coding quality. Figure 5 shows for video
#39 the relative and absolute size of compressed files as the
quantization step size q varies. It is revealed that both ab-
solute and percentage size of quantized residues reduce as
quantizer becomes coarser. The file size at PSNR = 46 dB
is no more than 600 MBytes, and the file size at PSNR =
39 dB is no more than 100 MBytes, which is a significant
saving than storing time series directly. The crossing pat-
tern in Figure 5(a) implies that future work should focus on
improving the compression ratio of the quantized residues
if high PSNR videos are preferred by the textile scientists.
However, if low PSNR videos are adequate for wicking phe-
nomenon studies, future work should improve the compres-
sion ratio of reference blocks and prediction coefficients.

Note that achieving a high compression ratio is not the
only design goal for this compression scheme; development
time, maintenance costs, royalty rate are all considerations
when automating the wicking phenomenon studies.

5. Conclusion
In this paper, we proposed an efficient data structure for

videos acquired for studying the wicking phenomenon for
fabrics. We proposed using the volume of blocks as the
basic storage unit instead of using the frame as most off-
the-shelf codecs do. The proposed data structure allows
quick retrieval of a time series and can achieve a balance
between the time and memory overhead. We also proposed
a compression scheme that was designed for the proposed
data structure. Experimental results showed that the overall
system can encode the video in manageable file size while
providing satisfactory visual quality at different levels.

Acknowledgment: We thank Ms. Hey-sang Kim, Dr.
Stephen Michielsen, and Dr. Emiel DenHartog for provid-
ing the background knowledge and the sample videos.

References

[1] Vertical Wicking of Textiles, AATCC Std. TM197, 2013.
[2] B. Miller and I. Tyomkin, “Spontaneous transplanar uptake of

liquids by fabrics,” Textile Research Journal, vol. 54, no. 11,
pp. 706–712, Nov. 1984.

[3] X. Liu and C.-W. Wong, “Video-based wetting detection for
blended fabrics,” in Asilomar Conference on Signals, Systems,
and Computers (Asilomar’19), Pacific Grove, CA, Nov. 2019.


