# Efficient Video Data Structure and Compression Scheme for Fabric Wicking Phenomenon Studies

#### Chau-Wai Wong

Electrical and Computer Engineering North Carolina State University, USA

# **Wicking Phenomenon of Fabrics**

- Wicking phenomenon of fabrics dominates physiological comfortableness of clothes:
  - How fast does sweat/liquid transfers within fabrics?
  - In what pattern?
- Video frames recorded for studying wicking for a blended fabric made up of hydrophobic and hydrophilic yarns:



#### **NC STATE UNIVERSITY**

#### **Wicking-Performance Video**

#### Frames:



#### Intensity at selected pixel locations:



#### **Problem Statement**

- Textile scientists want to understand yarn-level wicking behaviors, e.g., what's the wetting time of a yarn?
- Need an efficient video data structure to allow *retrieving* color information along the time for each pixel.
- Overhead for a video encoded using H.265/HEVC can be 2 million (= 1920 × 1080) to 1.
- Loading a 3-min video requires 31 GBytes. Nonscalable!
- Solution: Change the basic storage unit from the frame → the volume of blocks.
- Also need to compress the new data structure for storage: manage file size while maintaining visual quality.

## **Strategies for Time Series Extraction**

- 1<sup>st</sup> approach: Keep only the RGB values at the required location and discard those of other locations. Overhead in time = 2M to 1.
- 2<sup>nd</sup> approach: Do not discard info for other locations but appending the info to the file indexed by spatial location.
   Requires I/O operations > 2M \* num of frames
- 3<sup>rd</sup> approach: Improves 1 & 2 by loading the whole video into memory and then saving a time series for every pixel location. **Prohibitive memory usage: 31 GBytes.**
- We propose an efficient data structure by combining the advantages of all three approaches.

# **Complexity Comparison**

**Table 1:** Complexity for different approaches for dumping timeseries for every pixel location. Complexity for decoder excluded.

| Approach | Peak memory              | Pixel loading           | I/O for out-                       |
|----------|--------------------------|-------------------------|------------------------------------|
|          | usage (×3 bytes)         | overhead                | put                                |
| #1       | WH                       | $WH^{\bigtriangledown}$ | Low                                |
| #2       | WH                       | 1                       | $\mathrm{High}^{\bigtriangledown}$ |
| #3       | $WHL^{\bigtriangledown}$ | 1                       | Low                                |
| Proposed | $WH\ell$                 | 1 to $N^2$              | Low                                |

 $\bigtriangledown$  indicates that the approach is extremely inefficient in this aspect.

Frame size, *W*-by-*H*; the total number of frames, *L*; segment length,  $\ell$ ; block size, *N*.

# **Proposed Efficient Data Structure**

#### Key features:

- Hold data in memory but use short segments ℓ = 120 frames and small block size N << min(W, H).</li>
   Low memory usage (712 MB).
- Save the pixels the first time they are decoded. Low or no pixel loading overhead.
- Low I/O requirement for file system.



Comparison video data structures

#### **Compression for Proposed Data Structure**

- Motivation: Generally purpose lossless compression for video data, no matter arranged in what form, is likely to be inefficient.
- Off-the-shelf video codecs such as H.265/HEVC may be an overkill, even when royalty fee factored in.
- Wicking videos has very specific properties that can be easily exploited for reducing the redundancy: frame-level intensity change, and minor spatial motion.

## **Proposed Compression Scheme**

- Spatial redundancy reduction: Linear prediction / regression for blocks along the time.
- Entropy coding: lossless image/text compression, e.g., PNG, LZMA, Deflate.



## **Experimental Results**

- Shoot 4 wicking-performance videos of 315, 127, 142, and 138 secs using iPhone X fixed on a tripod.
- Video content: Needle injecting pink liquid to one yarn, and the liquid subsequently transferred within yarns and between yarns.
- Videos are not completely still:
  - Vibration of injection needle.
  - Nonrigid distortion of fabrics after absorbing liquid.
  - Minor shake, panning, focus blurring for camera.

#### **NC STATE UNIVERSITY**

#### **Rate-Distortion Performance**



When quantizer becomes coarser, PSNR drops until it reaches a "lower bound".

For q ≥ 25, quality of the reconstructed video is mainly controlled by the quality of reference blocks and the predictor coefficients.

24-bit per pixel videos need << 1 bit per pixel to maintain PSNR > 38 dB.

#### **NC STATE UNIVERSITY**

# Size of Compressed Components Relative Absolute 1000 Quant Resi



File size: < 600 MB @ 46 dB; < 100 MB @ 39 dB  $\rightarrow$  Significant saving than directly storing time series.

Depending on whether textile scientists prefer small or large q, future work should improve compression ratio of

- Quantized residues, or
- Reference blocks and prediction coefficients.

## **Conclusions**

- Proposed an efficient video data structure for studying wicking of fabrics.
- Used the volume of blocks as the basic storage unit allowing quick time series retrieval.
- Designed a customized compression scheme that can encode wicking videos in manageable file size while providing satisfactory visual quality.