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Abstract—Textile scientists are seeking for automated ways to
understand the wicking phenomenon of blended fabrics from
recorded videos at the pixel level. In response to such need, we
design a video-based method for detecting pixels that will become
wet and for estimating the timestamps of wetting events, which
is the first step toward characterizing the wicking phenomenon.
Since the wicking behaviors of the blended fabrics can be very
different from one yarn to another within a small spatial region,
simple frame-level thresholding with morphological preprocess-
ing steps does not fit this application scenario. In this paper,
we analyze for each pixel the color variation along the time
for the wetting event detection. We develop an iterative merging
algorithm rooted from the likelihood ratio test to obtain a coarse-
level timestamp. The timestamp is then refined using a parametric
curve fitted to a small neighborhood. Experimental results show
that our automated method can achieve satisfactory wetting
detection performance when the generated binary wetting-event
video is compared with the raw wicking video.

Index Terms—Change-point detection, wetting, wicking,
blended fabric

I. INTRODUCTION

Understanding the wicking phenomenon of fabrics is very
important to textile scientists as it affects the physiological
comfort of the person whose skin is in touch with the fabric
[1]–[3]. Improving the wicking-performance in fabrics has
been the main goal of many segments of the textile industry
such as sportswear, military apparel, and textile printing.

To develop better-performed wicking fabrics, textile scien-
tists need a deeper understanding of the wicking mechanism of
fabrics, e.g., how liquid transports within yarns and between
yarns. However, the state-of-the-art theories on wicking are
lacking [4], [5]. The experimental investigations are therefore
needed into the yarn-level wicking behaviors. In the wicking-
performance experiments conducted by our textile colleagues,
blended fabrics made up of hydrophobic and hydrophilic yarns
are used. In each experiment, a fabric is kept static, and colored
water will be injected into one hydrophilic yarn using a needle.
The colored water will propagate both i) along the fibers of the
yarns, and ii) from one yarn to another. As time goes on, more
and more locations that corresponds to the hydrophilic yarns
of the fabric will change color due to wetting. To quantitatively
measure the wicking process within the fabric, the key stage is
to analyze whether and when the yarns get wet in the recorded
wicking-performance videos.

In this work, we propose a video analysis method for de-
tecting pixels that will become wet and estimating timestamps

Fig. 1. Block diagram for video-based wetting timestamp detection algorithm.

of wetting events. For each pixel in the video, its color with
respect to time can be treated as a time series, and a wetting
event can be defined as an abrupt change of the color in time.
Detecting abrupt changes in time series can be cast into a
change-point detection problem [6]–[8]. We develop a wetting
event detection method by searching for the timestamp that
corresponds to the fastest change in color. Instead of directly
working on a change-point detection problem of a vector-
valued time series, i.e., using intensity measurements from all
three color channels, we first target at finding a color direction
that best distinguishes the pixels that are dry and wet. Then,
we develop a coarse wet event detection method to obtain
a map of timestamps in quantized values. Those quantized
timestamps are then refined using a parametric curve fitted to
a small neighborhood of the coarse-level timestamp.

II. PROPOSED VIDEO-BASED WETTING EVENT
DETECTION METHOD

Our textile colleagues provided us with four typical
wicking-performance videos of fabrics made through knitting
or waving from different types of yarns that they recorded for
wicking phenomenon studies. The experiments were recorded
using consumer-grade mobile cameras. Artifacts may appear in
videos, such as slight vibration of the experimental platform,
camera focus change, ambient light change, etc. These artifacts
will eventually become noise of various characteristics in the
time series of color. A simple method of thresholding in color
is not likely to work well because more than one timestamp
may be generated for a pixel due to noisy time series and
determining the optimal thresholds for different pixels can be
challenging. Our proposed algorithm is designed to generate
exactly one timestamp per pixel and resist a reasonable amount
of the aforementioned noise. Fig. 1 shows the block diagram
of the proposed method.
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Fig. 2. Representative frames from four wicking-performance videos before
and after projecting to the color channel that maximizes the contrast between
dry and wet pixels: (a), (c), (e), (g) raw frames; (b), (d), (f), (h) frames after
projecting to the color channel of highest contrast. (Best viewed in color)

A. Selection of Most Discriminative Color Direction

To take the most advantage of all three channels in videos
and to reduce the dimensionality of the sample point of the
input time series, we apply the principal component analysis
with the manual inspection to determine the best color di-
rection for the subsequent video analysis. The results of our
preprocessed frames in the four test videos are shown in Fig. 2.
We visualize in Fig. 3 some representative color time series
projected to the selected color direction.

We downsample the video spatially to boost the signal-to-
noise ratio against sensor noise and to reduce the computa-
tional load for the wetting event detector. The desired frame
resolution is determined by the smallest dimension of the
fabric structure, i.e., the thinnest yarn, which is about 32 pixels
wide. The resolution should be at least 2× the Nyquist rate to
avoid aliasing. We choose 4× the Nyquist rate, which leads
to 1/4 downsampling factor for all videos.

In order to detect the wetting event timestamp for a pixel,
we first need to investigate the difference between dry and
wet pixels. For videos captured by consumer-grade mobile
cameras, each pixel has red, green, and blue color values
that correspond to the strength of the captured light around
frequency bands of red, green, and blue light, respectively.
Each channel may have different values depending on the color
of the wicking liquid and the intrinsic color of the fabric. To
take the most advantage of all three channels and to reduce
the dimensionality of the sample point of the input time series
from three to one, we can apply any dimensionality reduction
method to maximize the color contrast between the dry and
wet pixels.

In this very first exploration, we apply the principal com-
ponent analysis with manual inspection to determine the best
color direction for the subsequent video analysis. Here, manual
inspection is needed to pick the best color direction because
the first principal component corresponding to the largest
color variation of the video data may not be due to the
wicking effect. Other sources of color variation including
camera motion, out-of-focus blur, camera sensor noise may
cause stronger variations in color. For our four test videos of
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Fig. 3. Intensity of pixels as a function of time: (a) curves for pixels that will
eventually get wet, and (b) curves for pixels that will never get wet. Different
colors correspond to pixels at different locations.

whitish fabric and pink wicking fluid, we found that the first
principal component with RGB weights 0.35, 0.77, and 0.52
can capture the most of color variation due to wicking. The
results of our preprocessed frame in the four test videos are
shown in Fig. 2. It reveals a high contrast between dry and
wet pixels. The vector-valued time series after projecting to
the best color direction will be referred to as the intensity
time series hereafter.

We visualize in Fig. 3 some representative time series
of intensity values. It reveals that when a pixel is dry, its
intensity value keeps oscillating around a nominal value. When
it starts to get wet, its intensity value drops quickly. When it
is completely wet, its intensity will keep oscillating around a
lower nominal value. At times, some sharp peaks are observed
for all pixels, which may be caused by some global noise.

B. Coarse-Level Wetting Event Detection

In the case that the fabric is perfectly still in the video and
there is no noise disturbing colors of the yarns, the timestamp
of the wetting event can be determined by finding the time with
the largest intensity change. We define the time of the quickest
drop in an uncorrupted intensity time series u0(x, y, t) as the
timestamp of a wetting event, namely,

twet = argmaxt(|∂u0(x, y, t)/∂t|), (1)

where (x, y) is the spatial location of a pixel in the video, and
t is frame index.

For the test videos obtained using a consumer-grade mo-
bile camera and in conditions with unavoidable shakes of
the camera and minor deformation of the fabric during the
wicking process, the intensity time series, u(x, y, t), can be
noisy. We propose using the cumulative intensity U(x, y, t) =∫ t

0
u(x, y, τ)dτ to reduce the impact of the noise, and subse-

quently work on the less noisy cumulative intensity curve that
has a much better linearity for the wetting event detection.
Other possible solutions include lowpass filtering or fitting a
parametric smooth curve to the full-length signal u(x, y, t),
and then detect the time with the largest slope. However, the
former approach needs to design/select a filter and is more
computational intensive; the latter approach is complicated
because it requires multiple parameters precisely to describe
the full-length curve with heterogeneity.



Algorithm 1: Coarse-level wetting event detection.
input : Cumulative intensity for a particular pixel
output: Coarse-level timestamp of the detected wetting

event, twet coarse

Step 1. Initialization
1 Segment the time series into N equal-length pieces.
2 Fit a straight line to each segment. Obtain SSE Rk.
3 Fit a straight line to each pair of neighboring segments, i.e.,

kth and (k + 1)st segments. Obtain SSE Rk,k+1.

Step 2. Merging
repeat

1 Merge the two segments with smallest Λk,k+1.
until mink({Λk,k+1}) > η is true, or only 2 segments

remain

Step 3. Coarse-level timestamp localization
1 if More than 2 segments remain
2 twet coarse = L · argmaxk| arg[(1 + jβ̂k,1)/(1 + jβ̂k−1,1)]|

else if angle of two remaining segments < θ then
3 The pixel did not get wet

else
4 twet coarse = index at the junction of the two lines

end

We propose to first detect a coarse timestamp using iterative
merging of segments and then narrow it down using a para-
metric approach to find the precise timestamp of the wetting
event. For iterative merging, it is motivated by a statistical
test for assessing the linearity of a line segment consisting of
two subsegments. We formulate a hypothesis testing problem
such that H0 : βk = βk+1 vs. H1 : βk 6= βk+1, where
βk = (βk,0, βk,1) contains coefficients of the kth line segment.
We can use a likelihood ratio test (LRT) to determine whether
two line segments can be considered to belong to the same line.
We reject the null hypothesis H0 if Λk,k+1 = Rk+Rk+1

Rk,k+1
> η,

where Rk is the sum of squared error (SSE) for fitting the kth
segment, and Rk,k+1 is the SSE for the combined segment.
We show below that we can use a constant threshold η to
achieve high detection power for segments k and k + 1 of
arbitrary lengths. The LRT is equivalent to an F -test whose
degree of freedoms is 2 and nk + nk+1 [9], where nk and
nk+1 are the length of two segments, respectively. Since
nk + nk+1 is usually very large, the F -test statistic is not
a function of nk and nk+1, and therefore, a constant η can
achieve high detection power. Note that the test statistic Λk,k+1

characterizes the degree of linearity of the combined segment:
Λk,k+1 will be large if combined segment has bad linearity.

Iterative Merging of Short Segments The coarse-level
wetting event detection is to find the range of the wetting
event at low computational complexity. The pseudo code for
our coarse-level wetting event detection is shown in Algo-
rithm 1. We first cut the whole time series uniformly into N
segments. Each segment is fitted by a straight line, and we
calculate SSE for each fitted line, denoted as R1, R2, ..., RN .
Then, we also fit every two neighboring segments with a
straight line, and calculate SSE for each fitted line, denoted
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Fig. 4. Demonstration of the merging process for the segmented cumulative
intensity curve of a pixel: (a) the raw curve, (b)–(f) last five merging steps
from six to two segments. This example shows that by successively merging
segments of strongest linearity, the region of the largest convexity will stand
out, and the location of the final junction will be considered to be coarse-level
wetting timestamp. (Best viewed in color.)

as R1,2, R2,3, ..., RN−1,N .
At every merging step, we merge only the two segments

that has the smallest Λk,k+1. This ensures that we only merge
the segments that have the best linearity. We use the hyper-
parameter η to stop merging if all of the segments left have
bad linearity. Fig. 4 shows an example of the merging process.
It reveals that by successively merging segments of strongest
linearity, the region of the largest convexity will stand out,
and the location of the final junction will be considered to be
coarse-level wetting timestamp.

Note that the correct use of the LRT requires each segment
to be an approximated straight line. This requires us to merge
the segments in a bottom-up approach instead of a top-down
approach. If we are to find the wetting timestamp in a top-
down approach, it is highly likely that the segments being
tested are not approximated straight lines. This will violate
the LRT’s assumption and may render the test less powerful.

Coarse-Level Timestamp Localization We decide that a
pixel does not get wet if the merging process stops at two
remaining segments and the angle of two segments is smaller
than a threshold θ. We determine the coarse-level timestamp by
searching for the point that has the largest change in the angle
of the fitted lines, namely, twet coarse = L ·argmaxk| arg[(1+
jβ̂k,1)/(1 + jβ̂k−1,1)]|, where j2 = −1, β̂k,1 is the estimated
slope of the kth segment, and L = Time Series Length/N .

C. Timestamp Refinement Using Parametric Curves

We refine the coarse timestamps for those pixels that are
detected to be wet. By the design of the coarse-level merg-
ing based detection method, the timestamp of the quickest
change lies within a small range around the coarsely detected
timestamp. We should search for the time that corresponds
to the fastest drop in intensity, or the time that corresponds
to the most negative convexity in the cumulative intensity
curve. To reduce the impact of the noise, we can parameterize
the cumulative intensity and find the analytic expression for
time of the most negative convexity. To ensure there exists
a smallest value in the convexity function within an open



interval, we may design the convexity function to be a 2nd-
order polynomial concave upward with its vertex below x-axis,
and in turn, to model the cumulative intensity as a 4th-order
polynomial.

Specifically, we use the time series in the range of 2L
around the coarsely detected point as input, fit a 4th-order
polynomial curve y(t) = β0+β1t+β2t

2+β3t
3+β4t

4, and treat
the timestamp of largest convexity of the parameterized cumu-
lative curve or the largest slope of the parameterized intensity
curve, namely, t = β3/(4β4), as the final timestamp of the
detected wetting event. We choose the 4th-order polynomial
because we need its convexity (or its 2nd-order derivative) to
potentially have an extreme value within an open interval.

It should be noted that in most cases, the aforementioned
approach is effective in producing refined timestamps. How-
ever, it cannot deal with the cases that the raw intensity drops
fastest at either end of the refinement interval. In some rare
cases, it may also fail to generate a parametric convexity curve
that is concave upward due to strong noise. In this case, no
most negative convexity can be detected hence no refinement
output is available.

For a small percentage of pixels that the refinement fails, we
obtain the interpolated timestamp using those timestamps in
its spatial neighborhood. Noted that interpolated results may
be wrong if the neighboring pixel used for interpolation is
from another yarn which is not in the same wicking status.
Depending on the needs of textile scientists, both the fine-
tuned results with missing points or the fine-tuned results with
interpolated points can be useful.

The wetting event timestamp matrix can be visualized using
a binary wetting-event video that for each pixel, at most one
intensity-flip event from 0 to 1 can occur: BV(x, y, t) =
1[t(x, y) > twet(x, y)], where 1(·) is the indicator function.

III. EXPERIMENTAL RESULTS

As discussed in Section II, the performance of the whole
detection system is determined by various steps, such as the
choice of the color direction for projection, parameters of
coarse-level detection, the parameterization at the fine-tune
stage, etc. Among these factors, the performance of the coarse-
level detection which infers from the cumulative intensity
curve the rough location of the wetting event is the most
important.

For the coarse segmentation part, the number of segments,
N , is set to be 16. The threshold η for the LRT is set to
be 0.005. Using these parameters, the results of coarse-level
wetting timestamp map are shown in the first column of Fig. 5.
Compared to the frames toward the end of each video showing
snapshots of relatively stable wetting patterns, the coarse-level
wetting timestamp map is dominantly correct on the locations
of the wetting pixels. However, since the coarse timestamps
are quantized, the binary wetting-event videos do not look
smooth.

The results of the refined timestamp map are shown in the
second column of Fig. 5, in which the quantizer timestamps
are refined to take values in R+. Compared to the coarse-level
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Fig. 5. Wetting events detection results for four test videos. First column:
coarse-level wetting timestamp map. Second column: refined timestamp map
with missing points. Third column: refined timestamp map with interpolation.
Binary wetting-event video demo: goo.gl/SLLDuC. (Best viewed in color.)

detection method, a small number of points fail to refine. The
reason is discussed in Section II-C. In fact, this is acceptable
as wicking happens continuously in space, textile scientists
are able to exploit information from neighboring locations.
The binary wetting-event videos for the refined timestamps
are smooth but they miss a few locations.

The results of the interpolated timestamp map are shown in
the third column of Fig. 5. The failed-to-detect locations in
the second column of Fig. 5 are filled with values calculated
using neighboring timestamps. It is found that most of the
interpolated timestamps are consistent with the wetting time
of the videos. At this initial stage, we compare our results with
raw videos in a qualitative manner and textile scientists are
satisfied with the results. In our future work, we plan to collect
ground-truth labels for assessing the quantitative performance
of the proposed algorithm.

Below we examine the processing time of our proposed
method. Our method is inherently parallelizable: when detect-
ing wetting timestamps, the program can run in parallel, which
greatly reduces processing time. For a one-minute video, it
takes about 1.5 hours for coarse-level wetting detection. For
each pixel, it takes 30–50 ms to complete coarse-level wetting
detection. The time needed for fine-tuning and interpolation is
negligible compared to that of the coarse-level detection.

IV. CONCLUSION

In this paper, we proposed a wetting detection method for
blended fabric using wicking-performance videos. We have an-
alyzed the color variation along the time to detect the wetting



event for each pixel location. We have developed a coarse-level
wet event detection method to obtain a map of timestamps
in quantized values. Those quantized timestamps were then
refined using a parametric curve fitted to a small neighborhood.
Experimental results showed that our automated algorithm can
achieve satisfactory wetting detection performance when the
generated binary wetting-event video is qualitatively compared
with the raw wicking video.
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