
1. ALGORITHMIC DETAILS OF M1

1.1. Family Denoiser

We now formalize a family-based infection mechanism that
can be used in designing group testing algorithms for improv-
ing the detection accuracy. We define MF as the set of in-
dices of all members of family F . We say that F is viral
when there exists viral material in the family. Next, define
the infection probability of individual i within viral family
F as πind = Pr(Xi = 1 | F viral), for all i ∈ MF , and
πvf = Pr(F viral). Note that the infection status of individu-
als in a viral family are conditionally independent and identi-
cally distributed (i.i.d.).

Under our definition, family F being viral need not be at-
tributed to any individual i ∈ MF . After all, viral material
can be on an infected pet or contaminated surface. For this
model, once the family is viral, the virus spreads indepen-
dently with a fixed probability πind. Of course, our simplified
model may not accurately reflect reality. That said, without
a consensus in the literature on how coronavirus spreads, it
is unrealistic to create a more accurate model. On the other
hand, our model is plausible, and we will see that it is mathe-
matically tractable.

We further assume that individuals cannot be infected un-
less the family is viral, i.e., Pr(Xi = 1 | F not viral) = 0.
The family structure serves as SI and allows the group testing
algorithm to impose the constraint that people living together
have strongly correlated health status.

Next, we derive the exact form of the denoiser (1)
by incorporating the family-based infection mechanism.
Denote the pseudodata of the members of family F as
vF = (vi)i∈MF , the family-based denoiser for ith individual
can be decomposed as follows:

gfamily
in (vF )

=E [Xi | vF ] (7a)
= Pr(Xi = 1 | vF ) (7b)
= Pr(Xi = 1,F viral | vF ) (7c)
= Pr(F viral | vF ) Pr(Xi = 1 | vF ,F viral), (7d)

where the first term of (7d) is

Pr(F viral | vF )

=
f(vF ,F viral)

f(vF ,F viral) + f(vF ,F not viral)
. (8)

The two quantities in (8) can be further expanded as

f(vF ,F not viral) (9a)
=(1− πvf) f(vF | F not viral) (9b)

=(1− πvf)
∏

i∈MF

N (vi; 0,∆), (9c)

and

f(vF , F viral) = πvf f(vF | F viral) (10a)

=πvf

∑
xk∈ΩF

∏
i∈MF[

f(vi|Xi = xk,i) Pr(Xi = xk,i|F viral)
]
,

(10b)

where N (x;µ, σ2) := 1√
2πσ2

exp
(

(x−µ)2

2σ2

)
, and ΩF =

{0...00, 0...10, . . . , 1...11} is a power set comprised of
2|MF | distinct infection patterns for family F . The second
term of (7d) can be simplified as follows:

Pr(Xi = 1 | vF ,F viral)
= Pr(Xi = 1 | vi,F viral) (11a)
= Pr(Xi = 1, vi | F viral) / Pr(vi | F viral) (11b)

=
πindN (vi; 1,∆)

πindN (vi; 1,∆) + (1− πind) N (vi; 0,∆)
(11c)

=

(
1 +

1− πind

πind
· N (vi; 0,∆)

N (vi; 1,∆)

)−1

(11d)

=
(

1 +
(
π−1

ind − 1
)

exp
[(
vi − 1

2

)/
∆
])−1

. (11e)

1.2. Contact Tracing Denoiser

While family structure SI characterizes part of the spread of
the disease, individual members of a family will presumably
all come in close contact with each other, hence CT SI will
include cliques for these individuals. Additionally, CT SI de-
scribes inter-family contacts. Therefore, CT SI can charac-
terize the spread of the disease more comprehensively than
family SI. To exploit the CT SI, we encode it for each indi-
vidual i into the prior probability of infection, Pr(Xi = 1),
and use the following scalar denoiser:

gCT
in (vi)

=E [Xi|vi] = Pr(Xi = 1|vi) (12a)
=f(vi|Xi = 1) Pr(Xi = 1)/f(vi) (12b)

=
{

1+
[

Pr(Xi=1)−1−1
]

exp
[(
vi − 1

2

)/
∆
]}−1

. (12c)

Here, Pr(Xi=1) for day k+ 1 can be estimated by aggregat-
ing CT information of individual i over a so-called SI period
from day k − 7 to day k as follows

P̂r
(k+1)

(Xi = 1) = 1−
k∏

d=k−7

n∏
j=1

(
1− p̂(d)

i,j

)
, (13)

where p̂(d)
i,j is the estimated probability of infection of individ-

ual i due to contact with individual j. This probability, p̂(d)
i,j ,

can be determined by the CT information (τ (d)
ij , d

(d)
ij ), as well

as their infection status as follows:

p̂
(d)
i,j = exp

(
−
(
λ τ

(d)
ij d

(d)
ij Ψ

(d)
ij + ε

)−1
)
, (14)

Note: This is a supplemental document for “Contact tracing enhances the efficiency of COVID-19 group testing,” sub-
mitted to 2021 IEEE International Conference on Acoustics, Speech and Signal Processing by Ritesh Goenka,? Shu-Jie
Cao,? Chau-Wai Wong, Ajit Rajwade, and Dror Baron. RG and SJC have made equal contributions to the paper.
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Fig. 4. Performance of M1 in terms of ROC when family denoiser (top row) and CT denoiser (bottom row) are used. Columns
correspond to averaged sparsity levels ranging from 2.12% to 8.86%. Within each plot, the performance under three measure-
ment levels for a population of n = 1000 individuals is compared. The dot on each curve corresponds to an operating point
that minimizes the sum of FPR and FNR. The CT denoiser significantly outperforms the family denoiser with error rates mostly
below 0.05. The estimation problem is more challenging when fewer measurements are used at a higher sparsity level.

where Ψ
(d)
ij = 1 − P̂r

(d)
(Xi = 0) P̂r

(d)
(Xj = 0), λ is an un-

known Poisson rate parameter, and ε is used to avoid division
by zero. We estimate λ with maximum likelihood (ML) using
the pseudodata of all individuals, i.e.,

λ̂ML = arg max
λ

n∏
i=1

f(vi|λ), (15)

where f(vi|λ) = f(vi|Xi = 1) Pr(Xi = 1|λ) + f(vi|Xi =

0) Pr(Xi = 0|λ). Once λ̂ML is obtained, it is plugged into
(14) for calculating the prior probability [18]. Note that this
plug-in strategy is also used for two other denoisers, namely,
λ = ρ for gBernoulli

in (vi) and λ = (πvf, πind) for gfamily
in (v).

2. ADDITIONAL RESULTS FOR M1

In Sec. 4 of the main paper, we reported the performance of
M1 in a compact way, due to space limitations, by choosing
a representative operating point on an ROC curve instead of
using the whole curve. In this section, we provide complete
ROC curves that correspond to the top row of Fig. 3 of the
main paper. Fig. 4 illustrates M1’s performance for family
and CT denoisers at different measurement and sparsity lev-
els. The dot on each curve corresponds to the operating point
that minimizes the total error rate, i.e., the sum of FPR and
FNR, as reported in Sec. 4 of the main paper. The closer a dot
is to the origin of the FPR–FNR plane, the better the perfor-
mance it reflects. Comparing the ROC curves in the top row to
those in the bottom row, we note that the CT denoiser signif-
icantly outperforms the family denoiser at all sparsity levels.
The CT denoiser, with most of its FNR and FPR < 5%, can
achieve as low as 15% of the total error rate of the family

denoiser. Across different sparsity levels, the algorithm per-
forms less accurately as the sparsity level increases. In each
plot, lower measurement rates make it more challenging for
the group testing algorithm.

We also examine the stability of the thresholds corre-
sponding to the operating points we selected to report results
in Fig. 3 of the main paper. Our empirical results reveal that at
a particular sparsity level, the variation of the threshold due to
different design matrices or denoisers is less than 0.003. As
the sparsity level increases from 2.12% to 8.86%, the thresh-
old only drops from 0.160 to 0.137. Hence, the threshold
for minimizing the total error rate is insensitive to the testing
conditions.

3. ADDITIONAL EXPERIMENTS FOR M1

3.1. Using Prior Knowledge of the Infection Status

In this subsection, we examine the advantage that prior
knowledge of the population’s infection status in the startup
phase provides our proposed algorithm for the M1 binary
model. As stated in Sec. 3 of the main paper and in (13), our
algorithm iteratively uses the updated probability of infection,
P̂r(Xi = 1), estimated from an SI period of 8 immediately
preceding days. Note that for days k < 8, we had to use the
ground-truth infection status of each individual in the startup
phase to generate the results reported in Sec. 4 of the main
paper. However, ground-truth infection data from the startup
phase may provide our approach an unfair advantage over the
algorithms proposed for M2. Below, we investigate whether
this advantage is significant.

We examine how varying the amount of startup informa-
tion impacts our algorithm’s quality. Specifically, we ran-
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Fig. 5. Performance of M1 when a proportion, pexcluded, of
the population’s health states in the startup phase is unknown.
The curves reveal that in the absence of up to 50% prior
knowledge of the infection status of the population, the accu-
racy of M1 is close to that when complete startup information
is available.

domly replace a portion, pexcluded ∈ {0, 0.1, 0.5, 0.75, 1}, of
the population’s infection status by an estimated probability
of infection, e.g., 5%, for a setup that has a true averaged
sparsity level of 7.2%. Using a probability instead of a binary
value, 0 or 1, gives the algorithm soft probabilistic informa-
tion instead of hard ground-truth style information. Fig. 5
shows that even with 50% prior knowledge of the infection
status of individuals, our detection accuracy for M1 is close
to that when using complete prior information after ramping
up for 8 days. The averages of the total error rates across time
for increasing pexcluded are 0.038, 0.039, 0.046, 0.148, and
0.407, respectively. We also tried to replace the startup infec-
tion status by an estimated probability of infection of 10%,
but only observed negligible performance differences. The
results show that the CT algorithm is robust to the absence of
up to 50% of startup infection information.

3.2. Duration of Startup SI Period

We investigated the impact of the duration of the startup SI
on estimation performance. In principle, the longer the SI du-
ration, the more accurate we expect the results to be. There
is a trade-off between the accuracy of our algorithm and the
startup SI infection status information that needs to be pre-
collected before the initialization of the testing algorithm. In
our experiment, we tested three startup SI durations, namely,
4 days, 8 days, and 12 days. Our experimental results (omit-
ted for brevity) show that the estimation accuracy is somewhat
insensitive to the duration of the SI period. Hence, for the ex-
periments conducted for this paper, we chose 8 days as the SI
period.

4. AN ADDITIONAL EXPERIMENT FOR M2

4.1. Data Generation

For this experiment, we use a different and slightly more gen-
eral contact tracing graph to simulate the spread of infection.
Recall that the adjacency matrix of the contact graph has a
block diagonal structure with sizes of cliques coming from
the distribution of family sizes in India [17, pg. 18]. How-
ever, in this case, we allow two consecutive (according to the
order in which cliques appear along the diagonal of the con-
tact matrix) non-trivial cliques (i.e., cliques with more than
one node) to have an overlap of one node with probability
half. This assumption is reasonable since the concept of fam-
ily encompasses more general groups such as people at the
same workplace, students studying in the same classroom,
etc. Furthermore, we remove α = 5% of the edges from this
block diagonal structure, thus converting the existing cliques
into “almost-cliques.” This modified block diagonal structure
is kept constant over time while the cross-clique contacts are
updated every day. Except for the changes in the underlying
contact tracing graph, the rest of the data generation method
is the same as that described in Sec. 2 of the main paper.

4.2. Inference

We use the four algorithms (including COMP) for multiplica-
tive noise described in Sec. 3 of the main paper. However,
instead of using maximal cliques as groups in COMP-SQRT-
OGLASSO, we use the decomposition of the contact tracing
graph into overlapping 3-clique communities [23]. An al-
gorithm for detecting k-clique communities can be found in
Sec. 1 of [23, Supplementary Notes]. The first step of this
algorithm involves finding the maximal cliques in the contact
graph, for which we use the Bron-Kerbosch algorithm [21]. In
the next step, we detect 3-clique communities and label each
of those as groups. Further, we also label as groups the max-
imal cliques that are not part of any of these communities, in
order to ensure that every contact is taken into account. The
advantage of using 3-clique communities over just maximal
cliques is that the former is able to capture “almost cliques,”
i.e., cliques with a small fraction of absent pairwise contacts.

4.3. Numerical Results

We present the results in a format similar to that in Sec. 4 of
the main paper, but for the contact graph described in Sec. 4.1.
Fig. 6 shows the mean values (across 50 signals) of the false
negative rate (FNR) and false positive rate (FPR) obtained for
four different sparsity levels. The sparsity levels were ob-
tained by varying the amount of cross-clique contacts. We
remark that the length of each bar in Fig. 6, FNR + FPR,
is equal to 1 − Youden’s Index. Further, we plot heat maps
(Fig. 7) to compare the performance of the four algorithms
under consideration—the intensity of gray corresponds to the
mean value (across 50 signals) of the Matthews Correlation
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Fig. 6. Figure showing mean FNR and FPR values for the contact graph from Section 4.1, for mean sparsity levels of 3.20%,
4.84%, 6.25%, 8.66% (from left to right).

8.66% 6.25% 4.84% 3.20%
Average fraction of people infected s

375

300

150

Nu
m

be
r o

f m
ea

su
re

m
en

ts
 m

0.60 0.61 0.63 0.72

0.45 0.49 0.52 0.61

0.24 0.29 0.34 0.47

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
CC

8.66% 6.25% 4.84% 3.20%
Average fraction of people infected s

375

300

150

Nu
m

be
r o

f m
ea

su
re

m
en

ts
 m

0.67 0.67 0.70 0.77

0.50 0.54 0.57 0.68

0.26 0.31 0.35 0.51

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
CC

8.66% 6.25% 4.84% 3.20%
Average fraction of people infected s

375

300

150

Nu
m

be
r o

f m
ea

su
re

m
en

ts
 m

0.71 0.71 0.76 0.81

0.57 0.61 0.65 0.74

0.35 0.46 0.48 0.64

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
CC

8.66% 6.25% 4.84% 3.20%
Average fraction of people infected s

375

300

150

Nu
m

be
r o

f m
ea

su
re

m
en

ts
 m

0.73 0.73 0.78 0.82

0.59 0.63 0.67 0.76

0.40 0.48 0.52 0.64

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
CC

Fig. 7. Figure showing mean MCC values obtained using COMP, COMP-LASSO, COMP-SQRT-GLASSO, COMP-SQRT-
OGLASSO (from left to right).
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Fig. 8. Figure showing mean RRMSE values obtained using COMP-LASSO, COMP-SQRT-GLASSO, COMP-SQRT-OGLASSO
(from left to right).

Coefficient (MCC). The MCC is defined as

MCC =
TP× TN− FP× FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
, (16)

and has been proposed as a comprehensive metric to evaluate
the performance of binary classification algorithms [27]. Its
values range from −1 to +1, where a value closer toward +1
is desirable. The RRMSE values can be seen from the heat
maps in Fig. 8 (we do not provide a heat map for COMP since
it does not estimate viral loads).

5. ADDITIONAL RESULTS FOR M2

For model M2, we present a comparison of the four algo-
rithms for the experiment described in Sec. 4 of the main
paper. Fig. 9 and Fig. 10 show a comparison of the perfor-
mance of the algorithms under consideration in terms of mean
MCC and mean RRMSE values, respectively. Further, we re-
mark that the true viral loads of the false negatives yielded

by COMP-LASSO variants are concentrated toward lower val-
ues. For instance, only about 29% of the false negatives given
by COMP-SQRT-OGLASSO had viral load values greater than
212 = 4096.

6. SENSING MATRIX DESIGN

As mentioned in the main paper, we use Kirkman triple matri-
ces as sensing matrices for performing pooling. A Kirkman
triple (binary) matrix A can be partitioned into 3n/m sub-
matrices of dimensions m×m/3, each of which contains ex-
actly one nonzero entry in each row and three nonzero entries
in each column. Further, the dot product of any two columns
of the matrix A should not exceed 1. For a given value of n,
m(< n) must satisfy the following conditions:

1. m must be of the form 3n1, where n1 divides n, since
the number of sub-matrices and the number of columns
in each sub-matrix must be integers.
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Fig. 9. Figure showing mean MCC values obtained using COMP, COMP-LASSO, COMP-SQRT-GLASSO, COMP-SQRT-
OGLASSO (from left to right).
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Fig. 10. Figure showing mean RRMSE values obtained using COMP-LASSO, COMP-SQRT-GLASSO, COMP-SQRT-OGLASSO
(from left to right).

2.
(

3
2

)
· n ≤ m(m− 1)/2 since a triple contains

(
3
2

)
pairs

and a pair must belong to at most one triple.

For n = 1000, the only values of m which satisfy the above
constraints are 120, 150, 300, 375, 600, and 750. We con-
struct Kirkman triple matrices with m = 150, 300, 375 and
use them in our experiments. The matrices are constructed
based on a few simple rules:

1. The indices of ones in each column form an arithmetic
progression (AP).

2. The matrix has a block structure and the common dif-
ference of the AP remains constant throughout each
block. Furthermore, the sum of all columns in a block
yields the vector consisting of all ones.

3. The common difference values {dB : B is a block} are
chosen such that the multi-set {r · dB : r ∈ {n : n ∈
N, n < 3},B is a block} has no duplicate values.

Fig. 11 shows the structure of a 375×1000 Kirkman triple
matrix obtained using the above approach. Let B be any
block and let dB denote the common difference of the AP
for block B as indicated in the figure. Then, the ith column
of B is given by

Bi =

3−1∑
j=1

eβi+jdB , βi = mod(i, dB) + 3dB [i/dB ], (17)

where [·] denoted the greatest integer function and ej denotes
the jth standard basis vector. Clearly, any block B must have
dimensions 3nB × nB , where dB divides nB .

As m decreases, it becomes harder to design matrices sat-
isfying all three rules specified earlier. However, it is pos-
sible to relax the third rule in such cases and still obtain a
matrix satisfying the required constraints. For example, our
150 × 1000 Kirkman triple matrix does not obey the third
rule. We further remark that one may design balanced matri-
ces with a different number of (say k) ones in each column
such that the dot product of every pair of columns is bounded
by 1, using the above approach. Such matrices would arise
from the Steiner systems S(2, k,m) [just as Kirkman matri-
ces arise from S(2, 3,m)]. For example, it is straightforward
to design a 400×1000 matrix with k = 4 using our approach.
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Fig. 11. A 375 × 1000 Kirkman triple matrix obtained using our approach. The number written within each block is equal to
the corresponding common difference value and the blocks without number markings are zero matrices. The blocks having less
than m = 375 rows have dimensions equal to 3dB × dB .


