Toward Effective Automated Content Analysis Via Crowdsourcing

Jiele Wu,^{b,n} Chau-Wai Wong,ⁿ Xinyan Zhao,^u Xianpeng Liuⁿ

^b Beijing Institute of Technology, China
 ⁿ North Carolina State University, USA
 ^u University of North Carolina at Chapel Hill, USA

Complex Tasks are Difficult for Crowdsourcing

- Coding/annotation by crowdsourcing was shown to be effective when measuring relatively objective features.
- However, latent *subjective features* are difficult for crowdsourcing:
 - Lack of validated tools to measure complex subjective semantic features, e.g., emotion, frame, moral reasoning.
 - Online workers' response quality tend to deteriorate as they work longer.
- <u>A Core Question: How to balance quality and efficiency in crowdsourcing</u> coding/annotation of difficult tasks?

Proposed Solution: Quality-Aware Annotation System

- Proposed quality-aware semantic annotation system:
 - Qualifying: Select MTurk workers who are capable of complex coding.
 - Monitor MTurk workers' performance and provide feedback over time.
- Tested the system through a task of labeling emotions of tweets related to the Flint water crisis.
 - 11 emotions: anger, disappoint, sorrow, fear, and worry, satisfied, hope, sympathy, grateful, surprise and sarcasm.^{1,2}
 - We had each tweet labeled 5 times for 9,287 tweets, resulting in a total of 42,980 labels.³

¹ R. S. Lazarus, *Emotion and Adaption*. Oxford University Press, 1991.

¹ Y. Jin et al., "Toward a publics-driven, emotion-based conceptualization in crisis communication: Unearthing dominant emotions in multi-staged testing of the integrated crisis mapping (ICM) model," 2012.

³ K. Benoit, D. Conway, B. E. Lauderdale, M. Laver, and S. Mikhaylov, "Crowd-sourced text analysis: Reproducible and agile production of political data," 2016.

Qualifying Process

Real-Time Performance Monitoring

Qualification

Coding/ Annotation

Feedback

- Training session: Background, instructions, 5 training questions.
- 2) Test session: One is qualified if the score over 15 tweets passes a baseline.
- 1) A worker codes 20 randomly selected tweets (5 have groundtruth labels).
- 2) Ground-truth data(*N* = 100) labeled byhuman experts.

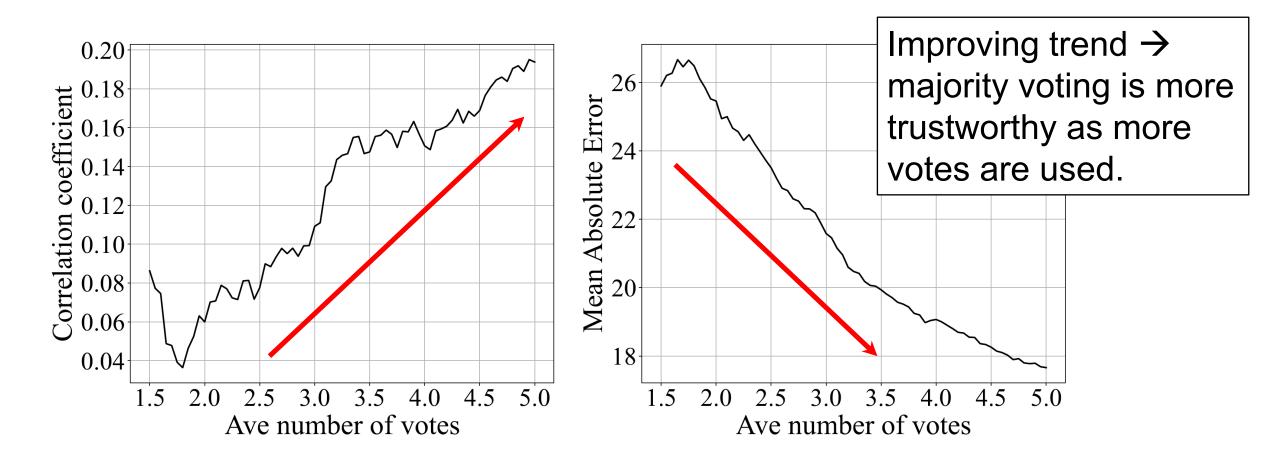
- Quality score: Percentage of correctly answered questions out of 5 embedded ones.
- 2) Must maintain
 cumulative quality score
 > 60% to work on
 subsequent tasks.

RESULTS

<u>1. Quality Control is a Must for Complex Coding Tasks</u>

- The qualifying process can identify eligible workers:
 - 150 out of 1,030 MTurk workers were interested in & capable of doing complex coding task.
- The real-time performance monitoring is effective in removing weak workers:
 - 11% workers could not maintain cumulative quality scores above the minimally qualifying score, 60%.
 - They were disqualified from subsequent tasks.

2. Majority Voting is Consistent with Experts Labeling



Majority-voting quality scores evaluated on 20 tweets to be labeled.

<u>3. Majority Voting Results Are Learnable</u>

- We characterized the *learnability* using the generalization capability of a *powerful learning system*, e.g., a fine-tuned deep neural network.
- We show that majority-voting based labels can be learned, achieving a classification accuracy around 70%–80%.

	Weight scheme	Valence Balanced acc		Resiliency Balanced acc		Attribution Balanced acc	
		Balan Ave	Gain	Ave	Gain	Ave	Gain
-	Equal weight	70.3	-	78.4	-	72.8	-
Weighted voting can improve labels' quality	Design 1	68.8	-1.5	79.5	1.1	72.5	-0.3
	Design 2	70.3	0	79.9	1.5	75.6	2.8
	Design 3	70.9	0.6	81.0	2.6	73.2	0.4

Discussions & Recommendations

- Challenges for labeling multiple-emotion tweets:
 - Intuitive emotions (anger) tend to mask the less intuitive ones (sarcasm).
 - Workers tend to just report one primary label rather than all emotions.
 - Solutions: i) Adapt a multiple-label task into a single-label task. ii) Craft a quality metric to encourage the discovery of secondary labels.
- Workers may unintentionally label own emotions instead of tweets' emotions.
 - Solution: In addition to the initial training, constantly remind workers of the coding/annotation rule.
- Coding accuracy of tweets vary from 10% to 100%.
 - Solution: Select easier questions for lower performing workers.

Conclusion

- We have proposed a crowdsourcing system that can harvest a large number of high-quality labels for complex coding tasks.
- We have shown that labels aggregated based on majority voting are accurate, consistent, and learnable.

Welcome to our poster!