Contact Tracing Enhances the Efficiency of COVID-19 Group Testing

Ritesh Goenka,*ⁱ Shu-Jie Cao,*^s Chau-Wai Wong,ⁿ Ajit Rajwade,ⁱ Dror Baronⁿ

ⁱ IIT Bombay, India
 ^s ShanghaiTech University, China
 ⁿ North Carolina State University, USA

CISS 2021

^{*} Equal Contributions.

Conventional Testing for COVID-19

- Conventional testing steps:
 - Collect sample using nasal or oropharyngeal swab.
 - Amplify genetic material with reverse transcription polymerase chain reaction (RT-PCR).
 - Report positive/negative based on thresholding amplified genetic material.
- Challenges:
 - Resource intense.
 - False negatives & false positives.
- Want more efficient testing.

Group Testing to Reduce # of Tests Needed

- Goal: Test a population of size n with fewer tests m (< n).
- Initial idea [Dorfman'43] Δ :
 - Test individuals in groups of a given size, e.g., 3.
 - A group tested negative → all healthy.
 - Tested positive \rightarrow

continue with individual testing.

- Limitations of Dorfman's approach:
 - Assumes i.i.d. health status.
 - Fragile to false negatives & positives.

^A Dorfman, "The detection of defective members of large populations," 1943.
* Figure reproduced from https://en.wikipedia.org/wiki/Group_testing

Recent Progress of Group Testing Applied to COVID-19

- Can optimize group size [1].
- Compressed sensing formulation with prevalence rate, solved via message-passing style algorithm [2].
- Modeling multiplicative noise, and end-to-end study of decoding in pooled qPCR including matrix design, prevalence rate estimation [3].
- Exploited individual's symptom and family structure [4].
- Exploited community structure with a focus on encoder design [5–6], but did not consider noise.

[1] Hanel and Thurner, "Boosting test-efficiency by pooled testing strategies for SARS-CoV-2," Mar. 2020. [2] Zhu, Rivera, and Baron, "Noisy pooled PCR for virus testing," Apr. 2020.

- [3] Ghosh et al., "A compressed sensing approach to group testing for COVID-19 detection," May 2020.
- [4] Zhu, Rivera, Rush, and Baron, "Noisy pooled PCR for COVID-19 testing," May 2020.
- [5] Nikolopoulos, Guo, Fragouli, and Diggavi, "Community aware group testing," Jul. 2020.
- [6] Nikolopoulos, Srinivasavaradhan, Guo, Fragouli, and Diggavi, "Group testing for overlapping communities," Dec. 2020.

Group Testing: Compressed Sensing Approach

^{*} Zhu et al., "Noisy pooled PCR for virus testing," Apr. 2020.

[#] Ghosh et al., "A compressed sensing approach to group testing for COVID-19 detection," May 2020.

Our Contributions

- Improved test efficiency by using *side information (SI)*:
 - Family structure: nonoverlapping or overlapping.
 - Contact-tracing data: (i) who's in contact, (ii) physical proximity, and (iii) contact duration.

4% sparsity + only 15% measurements:

Both methods can achieve

```
~ 5% FNR & FPR.
```

Proposed method for binary noise

Proposed method for multiplicative noise

Simulate Infected Population w/ Contract-Tracing Info

 Use SEIR* style generative infection model incorporating contact-tracing side information (SI) for data simulation at individual level.

State transition diagram for an individual

Binary Noise (M1): Proposed Method

- Binary noise model (M1):
 - Pooling: w = Ax, $A \in \{0,1\}^{m \times n}$, $x \in \{0,1\}^n$.
 - Erroneous PCR testing: $\mathbb{P}(y_i = 1 | w_i = 0) = 0.1\%$, $\mathbb{P}(y_i = 0 | w_i \neq 0) = 2\%$.
- Decoding: Generalized approximate message passing (GAMP)* framework.
- Key: The design of denoiser, $g_{in}(v) = \mathbb{E}[X_i | V = v]$, where v is pseudo data.
 - Family denoiser #: Individual's group membership information.
 - Contract-tracing denoiser: (i) Who. (ii) How far. (iii) How long.

 [#] J. Zhu, K. Rivera, C. Rush, and D. Baron, "Noisy pooled PCR for COVID-19 testing," *Paris Machine Learning Meetup*, May 2020.
 * S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," *IEEE Int. Symp. Inf. Theory*, 2011.

Binary Noise (M1): Numerical Results

- Contact-tracing data as SI helps more than family structure.
- The larger the measurement rate, m/n, the better the performance.
- Using contract-tracing data, FNR & FNR < 5% except for challenges cases of sparsity level = 8.86%.

Multiplicative Noise (M2): Proposed Method

- Multiplicative noise model (M2):
 - Pooling: w = Ax, $A \in \{0,1\}^{m \times n}$, $x \in [0,\infty)^n$.
 - Noisy RT-PCR amplification: $y = w \circ (1 + q)^{\mathcal{N}(\mathbf{0}, \sigma^2 \mathbb{I})}$. $q \in (0,1]$: known amplification factor, $\sigma^2 \ll 1$ controls strength of PCR noise.
- Decoding: Group Lasso based algorithms.
 - Family structure: group square-root Lasso.

$$\widehat{m{x}}^{ ext{SQRT-GLASSO}} = rg\min_{m{x}} \|m{y} - m{A}m{x}\|_2 +
ho \sum_{g=1}^{n_1} \|m{x}_g\|_2$$

 Contact-tracing data: overlapping group square-root Lasso. Preprocessed by clique detection. Cost function in similar form.

Multiplicative Noise (M2): Numerical Results

- Using family/contact-tracing SI significantly improves the performance over decoding without SI.
- M2 can allow estimating viral loads of infected individuals.
- Both models are robust to inaccurate specification of contact-tracing information (duration/proximity of contact info. from Bluetooth).

Conclusion and Future Directions

- Improved efficiency by exploiting *family structure* and *contact tracing*.
- Have achieved ~5% FNR & FPR at 4% sparsity level/prevalence rate with the need of only 15% of tests required in a conventional testing scenario.
- Future Directions:
 - Design better group testing matrices by leveraging the insights from coding community.
 - Calibrate an exact number of groups for required performance.
 - Explicitly model RT-PCR noise.