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Overview

The Distance Geometry Problem (DGP)
involves determining the locations of
points in Euclidean space given
measurements of the distances between
these points.

Some of the applications of the DGP
include:

Computational biology
Wireless networks
Robotics
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Problem Formulation

The DGP consists of:

X = {x1,x2, . . . ,xN} ∈ RK×N

E(X ) = {(i, j) | (i, j) ∈ {1, . . . , N}2, i <
j}
dXij = ∥xi − xj∥2{{

y
[1]
ij , . . . , y

[Mij ]
ij

} ∣∣∣ (i, j) ∈ E(X )
}

The objective is to determine X given
noisy measurements of lengths of edges in
E(X ).

Measurements are often assumed to be
Gaussian.
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Estimating the locations of points

Given noisy measurements for each edge,
the common approach in the literature to
compute an estimate X̂ of X is to:

Make an initial guess and compute its
edge lengths.
Compute the sum of squared errors
(SSE) as

∑
(i,j)∈E(X )

Mij∑
m=1

(
y
[m]
ij − dX̂ij

)2

Adjust the locations of the points to
minimize this SSE cost function (e.g.
using a black-box optimizer).
Repeat until convergence.
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Contributions

Minimizing the SSE cost function implies
Gaussian noise assumption, but what if
the measurement noise isn’t Gaussian?

Our work: choice of cost function depends
directly on distribution of noisy
measurements =⇒ approximately half
the number of noisy edge length
measurements per edge needed for the
same estimation error.
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Results

An estimate X̂ of X will need to be evaluated up to rotation, translation, and reflection.

To do so, we first translate all points in X̂ and X so that their centroids are aligned at
the origin.

The OPP loss, which is a measure of how close an estimate X̂ is to X , is then the
solution of the optimization problem:

min
R

∥∥∥RX̂c −Xc

∥∥∥
F
,

s.t. RTR = I,
(1)

For the purposes of comparison, the OPP loss is normalized by the number of points in X .
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Results
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Figure: OPP loss values for example structures. Ground truth structures are labeled X , while example estimates,
together with their associated OPP losses, are also shown. We observe that estimates with lower OPP losses more closely
approximate the structure X .
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Results

Hypothesis: the cost function that corresponds to maximizing a likelihood function
improves performance over using the SSE cost function.

We tested this hypothesis on 8 triangles and 30 10-point structures in 2D.

We let the noisy edge length measurements for these structures follow a Laplace or
non-standardized Student’s t (NSST) distribution.

We then computed estimates for these structures using maximum likelihood (LL)
estimation, where the LL function was either Gaussian (SSE) or follows the distribution of
the measurements (Laplace or NSST).
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Results
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Figure: Distributions of OPP losses for 8 triangles when the noisy measurements follow a (a) Laplace or (b)
NSST distribution, and when matched and mismatched (Gaussian) likelihood (LL) functions are used. Each box
represents the percentiles (bottom to top): 10, 25, 50, 75, and 90.
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Figure: Distributions of OPP losses for the 30 10-point structures when the noisy measurements follow a (a)
Laplace or (b) NSST distribution, and when matched and mismatched (Gaussian) LL functions are used.
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Results
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Figure: Median OPP losses for the 8 triangles and for different M values when the noisy measurements follow a (a)
Laplace or (b) NSST distribution, and when matched or mismatched (Gaussian) likelihood functions are used.
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Future Work

Dependence of measurements.

Prior knowledge about structure (e.g. molecules).

Number of measurements per edge.

Theoretical evaluation of mismatch.
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