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Abstract—As the development of IBIS Algorithmic Modeling
Interface (IBIS-AMI) models gets complex and requires time-
consuming simulations, a data-driven and domain-independent
approach can have tremendous value. This paper presents a data-
driven approach to modeling a high-speed serializer/deserializer
(SerDes) receiver through generative adversarial networks
(GANs). In this work, the modeling considers multiple channels,
random bitstreams, and varying decision feedback equalizer
(DFE) tap values to predict an accurate bit error rate (BER)
contour plot. We employ a discriminator structure that improves
the training to generate a contour plot that makes it difficult to
distinguish the ground truth. The generated plots’ bathtub curves
strongly correlate to the ground truth bathtub curves and have
a root-mean-squared error (RMSE) of 0.014, indicating a good
fit.

Index Terms—SerDes, receiver, behavior modeling, adaptive,
generative, GAN, DFE, IBIS-AMI

I. INTRODUCTION

With increasing clock frequencies, signal integrity and
power integrity play an essential role in deciding whether
a device will function as desired. Engineers must consider
problems that may arise due to signal integrity and power
integrity from the device’s conception to production. To do
so, engineers utilize computationally expensive and time-
consuming simulations at each step of the design phase. Often,
designs consist of different intellectual property (IP) blocks
from different vendors. The vendors need to obfuscate and
conceal these design blocks to protect their IP; thus, the in-
dustry utilizes IBIS-AMI models to share relevant transmitter
and receiver design properties and compatibility with different
electronic design automation (EDA) tools.

As the frequency of operation goes up, the design com-
plexity of the transmitter and receiver circuitry increases.
Transmitters consist of finite impulse response (FIR) filters
with multiple taps, and receivers consist of continuous-time
linear equalizer (CTLE) and DFE filters to alleviate the signal
integrity issues arising from intersymbol interference (ISI).
However, the development of IBIS-AMI models requires mul-
tiple time-consuming design iterations to develop an accurate
model of their IP block as it requires detailed circuit-level
simulations. Hence, it is crucial to find alternative strategies
to improve simulation times and effectively assist engineers.

A rich swath of prior work attempts to solve the earlier
issues of iterative long simulation times through data-driven
modeling. All of the preceding work belongs to one of

two major categories: ones where different methods predict
characteristics such as eye height (EH) and eye width (EW),
and others where the proposed method predicts the underlying
time series or eye diagram. Machine learning (ML) algorithms
such as support vector machines can predict the system per-
formance metrics characteristics [1]. Artificial neural networks
(ANNs) show how system parameters can predict specific
eye characteristics [2]. However, in works that predict eye
characteristics, specifically EH and EW, there is a limitation in
the information an engineer obtains as the model only conveys
information about 4 different eye-opening points. Additionally,
these approaches use domain knowledge to choose system
characteristics, thus reducing the problem’s scope.

Predicting the underlying time series is the alternative to
predicting EH/EW from the proposed approaches. Non-linear
system identification (SID) models can effectively model a
receiver’s behavior and predict the output time series [3],
[4]. Li et al. show how a non-linear SID model can predict the
receiver behavior by recovering the underlying time series [3].
They expand on this by utilizing SID models for different
channel conditions but a fixed CTLE configuration and go a
step further by predicting the eye diagram of the system [4].
Each receiver configuration requires a unique model in both
cases, making the development process cumbersome.

Further, [5] and [6] model the impact of variable tap settings
to an effect. Li et al. use a deep neural network (DNN) to
learn a receiver’s CTLE adaptation process and evaluate the
results using eye characteristics [5]. Whereas Nguyen and
Schutt-Aine recover a pulse waveform using a recurrent neural
network (RNN) that demonstrates the impact of the DFE tap
setting. The RNN learns the initial state through a DNN that
takes the tap settings and learns a latent space [6].

Generative methods are gaining traction in different EDA
flows for image-based tasks through GANs. LithoGAN is an
example where the authors use GANs to go from an input
mask to an output resist pattern [7]. WellGAN is another
example of the design flow where a GAN converts the input
layout pattern to one that has the well regions defined [8].

This paper proposes a generative approach to model a
SerDes receiver accurately. We utilize a data-driven approach
to train a GAN for a receiver with various bitstreams, channel
conditions, and different DFE configurations to generate a
BER contour plot. The bathtub curves of the resultant plots are
highly correlated to the actual bathtub curves of the system and



show an RMSE of 0.014. Unlike prior work that uses GANs
to recover an eye diagram, this work can handle different DFE
configurations through an embedding network [9].

The rest of the paper is organized as follows. Section II
consists the necessary background and prior work. Section III
describes the proposed method and the metrics utilized for
evaluation. Section IV discusses the problem that was ana-
lyzed, and how the dataset was generated. Section V shows
the experimental results. Section VI concludes the article and
presents a brief overview of future work.

II. BACKGROUND

A. Bit-Error Rate (BER) Contour Plots

In today’s high-speed links, the device’s success depends on
its BER, the number of bits that arrive at the receiver in error
per unit time. Eye diagrams tell the engineer about the per-
formance of a communication link. An eye diagram contains
all possible transitions overlaid on top of each other; thus, it
provides insight into which transitions may present an issue
or how jitter in the link plays a role in determining the eye-
opening. Though eye diagrams are sufficient, it has become
increasingly challenging to measure BER of 1× 10−15 using
a sampling oscilloscope. So many have started to use bathtub
curves and their 2D representations, BER contour plots, as a
measure of performance [10].

Unlike the case of the eye diagram, a bit error rate tester
(BERT) creates the bathtub curve by generating and passing
data through a device under test [10]. The BERT compares the
transmitted and received data for errors across the unit interval.
BER contour plots are a 2D extension of the bathtub curves
and provide us a view of the eye closure as the BER increases
and reveal cases that an eye diagram might not recover as a
sampling scope relies on a sparse sampling strategy, making
it difficult to catch a bit error. Fig. 1 shows the BER contour
plot and its corresponding bathtub curve.

Fig. 1: BER contour plot and corresponding bathtub curve.

B. Generative Adversarial Network (GAN)

Generative networks have found tremendous use for tasks
such as synthetic dataset generation, super-resolution, and
image translation, to name a few. The GAN itself consists
of two modules: the generator, G, which generates samples
similar to the ground truth, and a discriminator, D, whose
job is to determine if a sample presented to it is the ground
truth or not. Mathematically, the generator attempts to learn a
mapping from some noise vector, z, to the desired image, y,

given parameters θg of the neural network, i.e., G : z → y. The
discriminator’s function D(y|θd) returns the probability that
the sample y presented to it is from the dataset or the generator.
Together the generator and discriminator play a min-max game
where they try to outperform each other until they reach a state
of equilibrium [11]. To that extent, the loss function is

LGAN(G,D) =Ey [logD(y)]

+Ex,z [log(1−D(G(z|x)))] .
(1)

Unlike regular GANs, which are a form of unsupervised
learning, the conditional GAN (cGAN) uses labeled data to
enable the model to extend the latent space z and thus generate
and discriminate images better. The generator learns a mapping
given some input x, and noise vector z, to generate an output
y. The discriminator trains to discern whether y is from the
dataset or the generator for a given input x [12]. To that extent,
the loss function in Eq. 1 changes to provide the loss function
of the cGAN

LcGAN(G,D) =Ex,y [logD(y|x)]
+Ex,z [log(1−D(G(x, z)|x))] .

(2)

Additionally, prior work has shown that adding an `1 loss
term to the generator training improves the quality of the
images generated by the model [12]. To control the impact
of the `1 loss, we multiply it by a factor λ. Thus the GAN’s
final objective is as follows:

L = LcGAN(G,D) + λ`1. (3)

C. Gramian Angular Field (GAF)

SerDes modeling is inherently a time series problem; thus,
to utilize GANs, which work well with images, we convert the
time-series waveforms to a Gramian angular field (GAF). The
GAF consists of the angular sums across different time steps
and exploits the temporal relationships enabling it to capture
channel effects such as ISI. Unlike other conversions, such as
a Markov transition field (MTF) and recurrence plots (RPs),
which keep the transition dynamics and signal trajectories
over an area, a GAF does not require additional tuning. By
converting the time series to images, a DNN can utilize
previously unavailable features by converting the time series
to an image.

To convert a waveform to a GAF, we scale the original data
between [−1, 1]. Then the scaled time series is expressed in the
polar coordinate system by taking the arccosine of the value of
the scaled time series at each time step. After converting to the
polar coordinate system, we make an m×m Gramian matrix,
where m is the length of the time sequence. The (i, j)th entry
of the Gramian matrix is the trigonometric sum or difference
between the ith and jth step to form the Gramian angular sum
field (GASF) or Gramian angular difference field (GADF),
respectively. The GASF is defined as follows:

G =


cos(φ1 + φ1) . . . cos(φ1 + φn)
cos(φ2 + φ1) . . . cos(φ2 + φn)

...
. . .

...
cos(φn + φ1) . . . cos(φn + φn)

 (4)



Fig. 2: GAN architecture used for training all implementations. The generator encoder and decoder with skip connections to
forward information for the reconstruction of the eye diagram. The discriminator takes in the concatenation of the GASF and
either the synthetic or ground-truth eye diagram.

where φn is the nth time step encoded in the polar coordinate
system.

III. METHODOLOGY

Like the Pix2Pix network, we use a U-Net-based network
as a starting point for the generator [12]. The generator uses
the waveform at the receiver’s input as a GASF and the DFE
tap settings to predict the appropriate BER contour plot. The
network itself consists of three sub-networks, a time encoder
network, a tap encoder network, and a decoder network. The
time encoder network learns a latent representation from the
GASF input and consists of convolution layers that downsam-
ple the input. The tap encoder is a fully connected network that
learns a latent space from the tap configurations. The decoder
network takes in the combined latent representation from the
two encoder models and attempts to recreate the correct BER
contour plot. The decoder network has ConvTranspose layers
to reconstruct the higher resolution BER plots and has skip
connections from the time encoder network such that there is
no information loss in the reconstruction process. The number
of filters used in the time encoder and decoder network aligns
such that the dimensions of the output image at each layer
match appropriately.

Unlike prior work, where a discriminator predicts patches
to determine whether the sample presented is from the dataset
or the generator, we employ a U-Net-based discriminator with
two levels of prediction. By having two levels of prediction,
the discriminator can focus on both global features and local
details [13]. The global prediction from the network comes
from the bottleneck in the U-Net, and it predicts whether the
combination of the GASF, tap settings and BER contour plot
are from the dataset or the generator. The local prediction

determines if each pixel value at each location is from the
dataset or the generator and, as such, has a size equal to
the output image size. However, unlike Schonfeld et al., we
use regular GAN loss functions instead of hinge loss as the
generated images are similar to the ground truth [13].

Fig. 2 shows the GAN model with the complete architecture
of the generator shown. As shown from the figure, the tap
encoder network’s learned representation adds to the time
encoder’s learned latent space, and together, the decoder learns
to transform the inputs to a BER contour plot. The generator
uses this local prediction and the global prediction from the
discriminator as feedback to modify its predictions for the next
iteration.

IV. DATASET CREATION

We created a parametric differential stripline model where
the length of line and spacing between signal traces are tune-
able parameters to create a practical problem. We uniformly
sample the design space, obtain the s-parameters of 10 differ-
ent transmission lines, and then use them as a communication
link to simulate a SerDes running at 32Gb/s with a 10% rise
and fall time. Before the data collection, we determine the
optimal tap settings for the DFE that yields the maximum eye-
opening for each transmission line through Ansys Electronic
Desktop. We use Gaussian sampling around the optimal taps
with a standard deviation equivalent to half of the optimal
tap weight to determine which DFE configurations to include
in the dataset. We then capture the waveforms going into
the receiver and the BER contour plots generated from the
simulation.

The original waveform consists of 32000-time steps, sam-
pled at every 0.5 ps. We downsample the waveform by
determining the appropriate Nyquist frequency, which was



10 ps. Thus, the preprocessing flow downsamples the original
waveform to 3200-time steps before converting it to a GAF.
The downsampling step is crucial as the GAF is an m×m
matrix, making the GAF generation a significant bottleneck
because its size increases exponentially with an increase in
the time series length.

Fig. 3: Randomly selected BER plots from the dataset which
showcases the wide range of solutions possible. The color bar
next to each of the BER plots gives the pixel intensities for
the 256×256 image.

After we downsample the waveforms, we transform them
to a GASF, one of the GAN inputs. The BER contour plots
captured by Ansys default to a resolution of 700×500, and the
preprocessing flow digitizes and resizes them to a 256×256
image used by the GAN as a target. Fig. 3 shows randomly
selected BER contour plots targeted at BER-6 with a 256×256
resolution from the dataset and illustrates the wide range of
possible outputs the GAN must learn to generate. Lastly, the
preprocessing flow normalizes the DFE tap settings [0, 1] to
help the model’s convergence.

V. EXPERIMENTAL RESULTS

To validate the generator’s results, we use a separate neural
network, the metric network, which produces a bathtub curve
for a given BER contour plot. We employ this approach as it is
not feasible to put the generated results back into a simulator
to determine if they are significant. Additionally, metrics such
as Frechet inception distance score, which compares image
quality between a dataset and GAN generated images, do
not reveal much about the system’s performance. We train
the metric network on the ground truth BER contour plots
and bathtub curves and then use it to obtain the bathtub
curves for the generated BER contour plots. The metric
network constitutes multiple convolutional layers and then has
a fully connected layer with the number of output neurons

corresponding to the number of steps in the bathtub curve, in
our case 700.

(a)

(b)

Fig. 4: Results using the cGAN with the left indicating the
GASF input, middle representing the ground-truth and right
representing the generated BER contour plot for two cases.

(a) (b)

Fig. 5: Bathtub curve prediction on BER plot from ground
truth, prediction and cGAN.

In Fig. 4, the first column contains the input waveform
to the receiver, which we express as a GASF, the second
column shows the ground-truth BER contour plot that we
obtain from Ansys Electronic Desktop, and the third column
is the generated BER contour plot. Both Fig. 4a and Fig. 4b
are results based on the test set from our dataset. It is
hard to determine whether any difference exists between the
BER contour plots based on simple visual inspection. All the
features are present in the correct locations, to the degree that
we observe that transition between different BERs is correct.

We further the visual inspection by quantifying their un-
derlying statistics rather than image similarity. As discussed
before, we evaluate the generated results by using our trained
metric network to predict the horizontal bathtub curves for
the generated BER contour plot. Fig. 5 shows the ground truth
bathtub curve, the metric model’s prediction on the actual BER
contour plots, and the metric model’s prediction on the gen-
erated BER contour plots for the cases discussed previously.
The generated bathtub curve and the ground truth curve show
a high correlation. Additionally, the RMSE between the two



Fig. 6: Varying the tap configuration from left to right with one tap adjusted. The difference between the tuned tap configuration
is shown on the second row.

curves over the entire testing dataset is 0.014, indicating a
good fit for the generated plots.

An impressive ability of GAN is their ability to interpolate
the conditioning values presented during training. We fix the
channel and input bitstream while changing the tap config-
uration values for two cases in the test set to verify this.
In Fig. 6, the original and the final tap configurations are
seen on the left and right most of the top row. In between,
we adjust one tap value as we move from left to right and
determine its impact by comparing the difference of the two
consecutive BER plots and highlighting regions of interest.
The bottom row shows that the first tap produces the most
significant change and impacts the opening region, whereas
subsequent tap changes have minor changes across the region.
Moreover, when comparing the difference between the initial
and final BER plots for the ground truth and generated case,
the difference occurs at identical locations.

We train all the models discussed here on an Nvidia 2080-
Ti GPU. As with most ML algorithms, the training time varies
based on the hyper-parameters. For the hyper-parameters, we
found that training takes 18 s per epoch and, on the whole,
takes 30min to train. During inference, the model takes
192ms ms to obtain a prediction from the GAN and the
metric network, showing its performance advantage over other
methods.

VI. CONCLUSION

This paper presents a data-driven approach to modeling
a high-speed SerDes receiver through GANs. The approach
converts the time series to an intermediate representation from
which the GAN performs a domain translation task based
on the different DFE tap settings. We demonstrate that the
bathtub curves for the generated images and ground truths
are correlated and have an RMSE of 0.014. Additionally,
we show that the model can interpolate between unseen tap
values while generating images similar to the ground truth.
This modeling requires a one-time effort in terms of the data

collection required but amortizes over the model’s lifetime as
such an effort takes 192ms during inference.

The impact of nonlinearities introduced by the CTLE in
the receiver can be explored in future work. Additionally,
the modeling aspect can include the impact of crosstalk and
different signaling modes. Another active area of research
revolves around using learned metrics to quantify the results
of GANs to make them suitable for a wide variety of tasks.
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