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Introduction

22022 IEEE 72th Electronic Components and Technology Conference  │  San Diego, California  │  May 31 – June 3, 2022

• Generating IBIS-AMI models requires significant effort

o Multiple computationally expensive design iterations are required for IBIS-AMI

o Significant amount of a designer’s time used in developing IBIS-AMI models

• Other data-driven approaches are limited 

o Support vector machines can predict only the eye-opening characteristics [1]

o System identification models can recover the entire eye diagram but require a dedicated model for 

each configuration of the channel and tap [2,3]

o Recurrent neural networks are used to recover a pulse response only [4]

[1] R. Trinchero and F. G. Canavero, “Modeling of eye diagram height in high-speed links via support vector machine,” in IEEE 22nd Workshop on Signal and Power Integrity (SPI), 2018, pp. 1–4.
[2] T. Lu, J. Sun, K. Wu, and Z. Yang, “High-speed channel modeling with machine learning methods for signal integrity analysis,” IEEE Transactions on Electromagnetic Compatibility, vol. 60, no. 6, pp. 1957–1964, 2018.
[3] B. Li, P. Franzen, Y. Choi, and C. Cheng, “Receiver behavior modeling based on system identification,” in 2018 IEEE 27th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS),2018, pp. 299–301.
[4] B. Li, B. Jiao, M. Huang, R. Mayder, and P. Franzon, “Improved system identification modeling for high-speed receiver,” in IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2019, pp. 1–3.
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Our Contributions

• We present a data-driven approach that uses a single model to predict a SerDes receiver’s performance 

through a BER contour plot while handling multiple channels and tap configurations 

• We demonstrate that this approach can interpolate between different tap conditions, including previously 

unseen tap conditions

• We show that the generated BER plots are significant by comparing the bathtub curves of the generated 

plot to that of the ground truths’
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Generative Adversarial Networks (GANs)

• GANs consist of two modules

o Generator (G): Creates new examples from a learned latent distribution

o Discriminator (D): Discerns whether an example provided to it comes from the generator or the dataset

o Together, they play a zero-sum game and try to outperform each other until they reach equilibrium

• cGANs consist of the same two modules, however,

o The generator learns to output, y, from a given input, x, rather than a random vector from a latent space

o The discriminator discerns whether a sample provided to it comes from the generator or the dataset, given some 

input

o The objective function for the cGAN is as follows:

𝐿𝑐𝐺𝐴𝑁 𝐺, 𝐷 = 𝐄x y log(D 𝑦|𝑥 ) + 𝐄x 𝑧 log(1 − 𝐷(𝐺 𝑧 𝑥 |𝑥)

where, z is randomness introduced by dropout in our implementation
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Gramian Angular Sum Field (GASF)

• Encode time-series as an image by transforming to a GASF

o Rescale the measurements between the interval [-1,1]

o Convert to the polar coordinate system by taking the arccosine of each time step

o Trigonometric sum between cosine of the sum of the ith and the jth angular points to form a GASF

o Takes < 10ms to finish the GASF generation over the entire dataset

• The temporal dependency between different time steps is captured.

o Captures the ISI effectively
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Conversion of time series to a polar encoding and then a GASF
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Our Approach: 2-Encoder Generator with U-Net 
Discriminator

• Generator is given the input waveform encoded as a GASF and taps weights to predict the bit error rate 
(BER) contour plot 
o Uses regular convolution with skip connections (pix2pix)

o Separate encoder network to learn the tap settings

• Discriminator is a U-Net architecture that predicts both a full pixel map (at decoder output) and a single 
true/false prediction (at the bottleneck) for a given input

o Takes the input GASF and either the ground truth BER plot or generated BER plot

o Predicts whether the concatenated image is from the dataset or generator using two levels of 
prediction
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Generator of the cGAN conditioned on the GASF and DFE tap configurations to predict an eye diagram
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Dataset

Channel + Tap + Bitstream Varied

• 4 low loss channels

o Open eye regardless of the DFE tap 
values

• 4 medium loss channels

o The optimal DFE taps are aggressive to 
yield a larger eye-opening

• 200 Gaussian samples around the optimal DFE 
tap settings

o 1 std deviation- Half of the optimal DFE tap 
setting
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Plot of random designs and their eye diagrams from multiple 
channels in the dataset 
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Preprocessing
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Time Series Preprocessing

• Original time series is at every 0.5ps for 600 UIs

o 1 UI = 31.25 ps (32 Gb/s)

o 10% for the rise and 10% fall time

• Based on the Nyquist rate, determine how much 
to downsample the input time series

o Downsample the raw waveform for an efficient 
generation of a GASF

Bit Error Rate (BER) Preprocessing

• It goes up to BER-15 but we limit it to BER-6 

o Actual device measurements are limited to 
BER-6

• Rescale the BER plot to values between [0,1] 
for pixel intensities

• The final image is resized to 256x256 to work 
with the models

Original and resized BER

PSD plot for time series waveforms
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Metric Network

• To evaluate the quality of images generated we use a deep neural network (DNN) trained on the ground 
truths eye diagram and their corresponding characteristics

o Uses encoder model architecture from the GAN generator/discriminator

o Consists of successive Convolution and Batch Normalization layers to reduce the dimension of the 
input image

• Output neurons correspond to the number of points in the bathtub curve that are being used to evaluate the 
generated BER plots

o In our case, there are 700 points in the bathtub curve 

o We calculate the Pearson Correlation Coefficient as well as the root mean squared error of the 
generated bathtub curve to the ground-truth bathtub curve to evaluate the generated BER plot
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Neural network used to predict the bathtub curves from the ground truth model
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Results-I: Baseline Models
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GASF representation of the time series, the corresponding ground-truth BER plot, the generator’s predicted BER, comparison of the underlying bathtub curves

GASF representation of the time series, the corresponding ground-truth BER plot, the generator’s predicted BER, comparison of the underlying bathtub curves

• Training and inference times of the model are comparable to prior work

o 18 seconds per training iteration

o 192 ms for inference 

• Bathtub curves of the generate images and ground truth are correlated and have a RMSE 0.014
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Results-II: Tap Interpolation
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The BER plots being varied on configurations in the test set (original and target) by changing one tap at a time and differences it yields in the BER plot (bottom row)



Your Company 
Logo

Conclusion

• We present a data-driven approach that uses a single GAN which can handle a receiver with

o Varying bitstreams

o Multiple channel conditions

o Varying DFE tap configurations

• GASF is an excellent intermediate representation to learn from

o Preprocessing the waveforms and GASF have overhead associated with them

• The dataset we use to train is smaller in comparison to other GAN models, which require thousands of samples, and training 

takes as long as other data-driven methods

• We demonstrate that this approach can interpolate between different tap conditions, including previously unseen tap conditions

• We evaluate the generated BER plots on their corresponding bathtub curves and show that they are a good fit
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