

Remote Blood Oxygen Estimation From Video Using Neural Networks

Joshua Mathew,*¹ Xin Tian,*² Chau-Wai Wong,¹ Simon Ho,³ Donald K. Milton,² Min Wu²

¹ NC State Univ., ² Univ. of Maryland, College Park, ³ Univ. of Maryland School of Medicine * Equal contributions

Blood Oxygen Saturation (SpO2)

- SpO₂: Important indicator of lung functions
 - Ratio of concentration of oxygenated hemoglobin to total hemoglobin

 $SpO_2(\%) = \frac{C(HbO_2)}{C(Hb) + C(HbO_2)}$

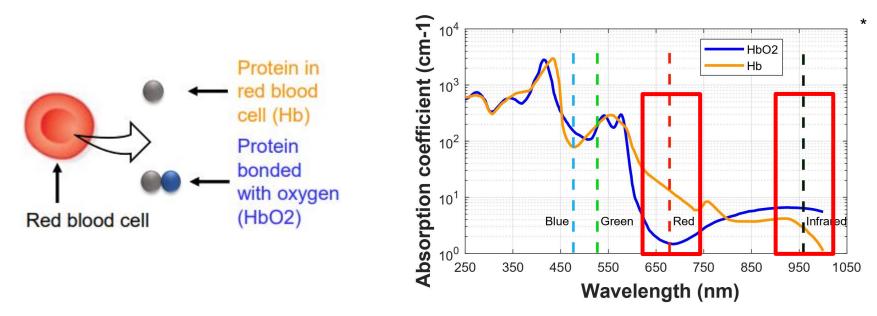
- SpO₂ Range ~95–100% in healthy people
 - COVID-19 clinical findings: Considerable # of patients had dangerously low SpO₂ w/o looking ill before conditions worsening

Pulse Oximeter

- Noninvasive, much less painful
- Convenient for daily use
- Less accurate (±2% error)

Pulse Oximetry

Exploits difference in light absorption of oxygenated (HbO₂) vs deoxygenated hemoglobin (Hb) to measure blood oxygen saturation (SpO₂)

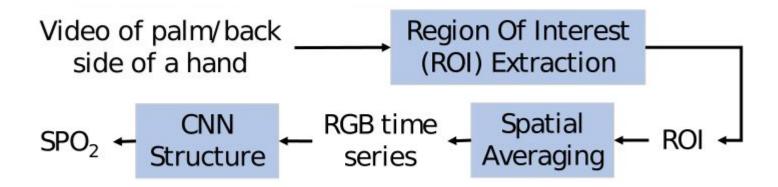


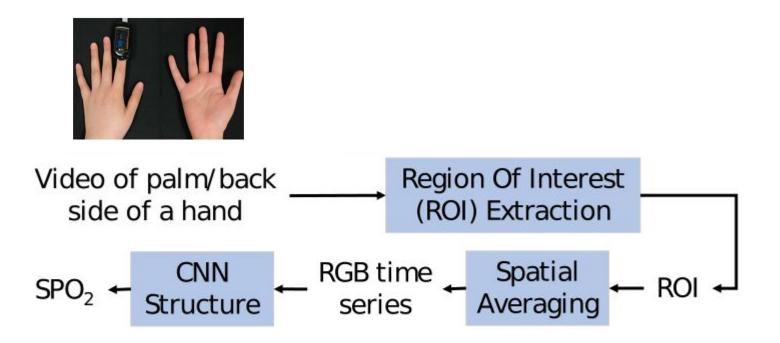
Drawbacks

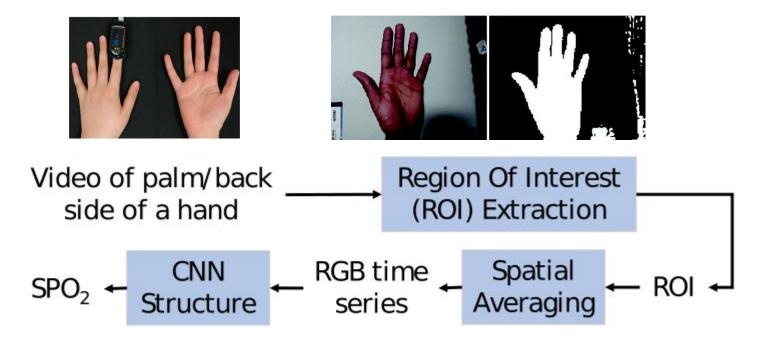
Requires direct physical contact

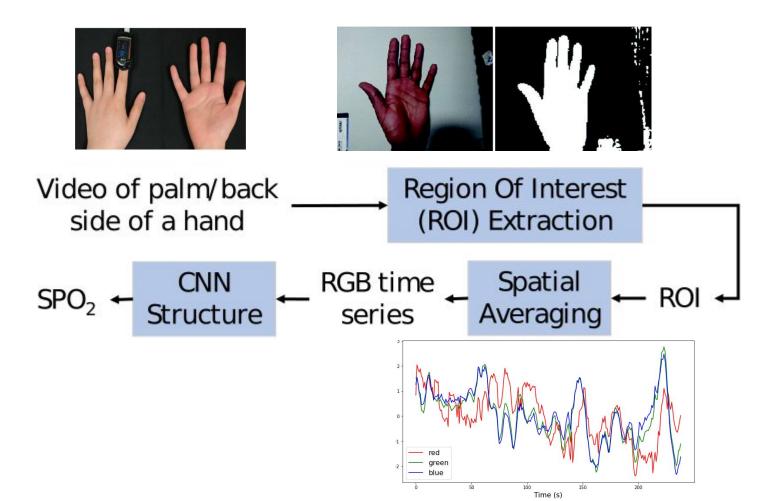
 Pulse oximeters not widely accessible, such as in marginalized communities and some undeveloped countries

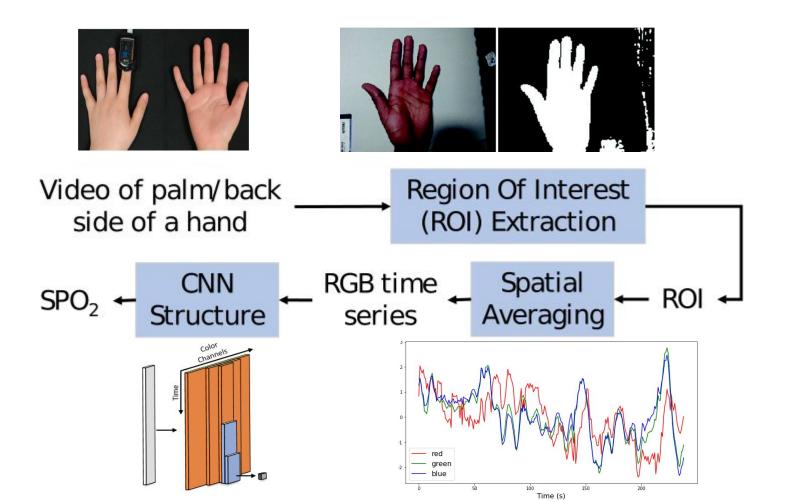
Proposed Method









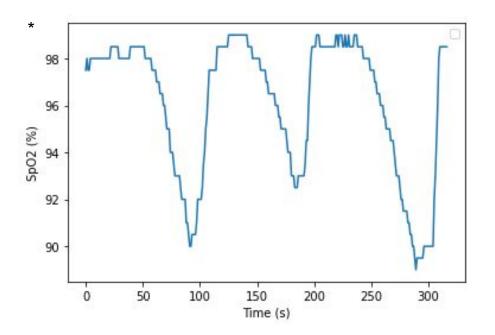


Data Collection

• Data collected from videos of the hand with palm up or down

Breathing Protocol

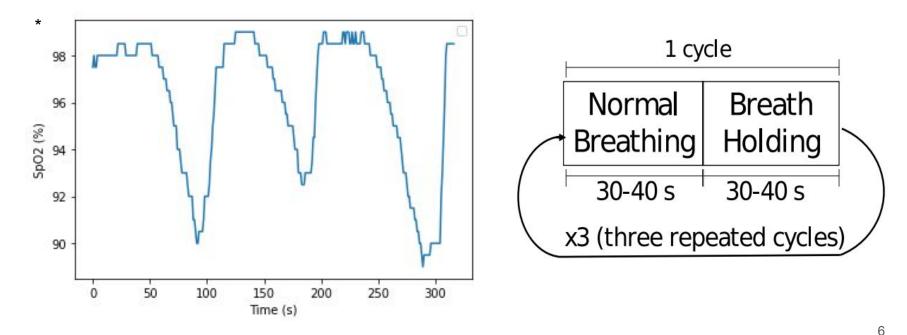
- Participants asked to follow a breathing protocol to vary SpO₂
- Increased range of SpO₂ values



*Fig. 7a from J. Mathew, X. Tian, C.-W. Wong, S. Ho, D. K. Milton, and M. Wu, "Remote blood oxygen estimation from videos using neural networks", *IEEE Journal of Biomedical and Health Informatics*, 2023.

Breathing Protocol

- Participants asked to follow a breathing protocol to vary SpO₂
- Increased range of SpO₂ values



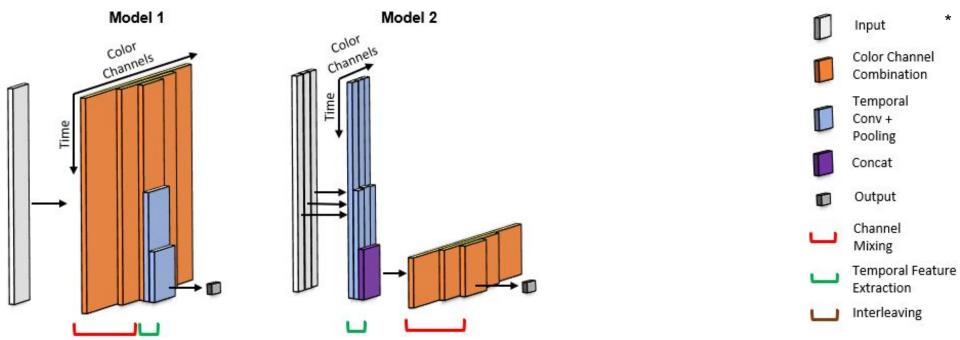
*Fig. 7a from J. Mathew, X. Tian, C.-W. Wong, S. Ho, D. K. Milton, and M. Wu, "Remote blood oxygen estimation from videos using neural networks", *IEEE Journal of Biomedical and Health Informatics*, 2023.

- Model 1 Channel mixing then feature extraction
- Model 2 Feature extraction then channel mixing
- Model 3 Interweaving channel mixing and feature extraction

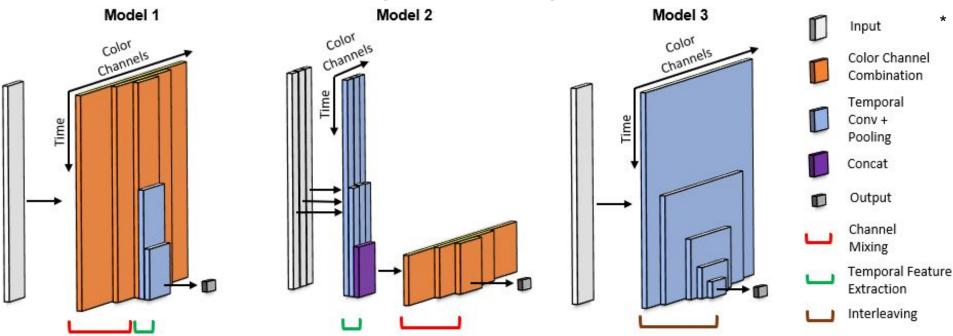
7

- Model 1 Channel mixing then feature extraction
- · Model 2 Feature extraction then channel mixing
- Model 3 Interweaving channel mixing and feature extraction

- Model 1 Channel mixing then feature extraction
- · Model 2 Feature extraction then channel mixing
- Model 3 Interweaving channel mixing and feature extraction



- Model 1 Channel mixing then feature extraction
- · Model 2 Feature extraction then channel mixing
- Model 3 Interweaving channel mixing and feature extraction

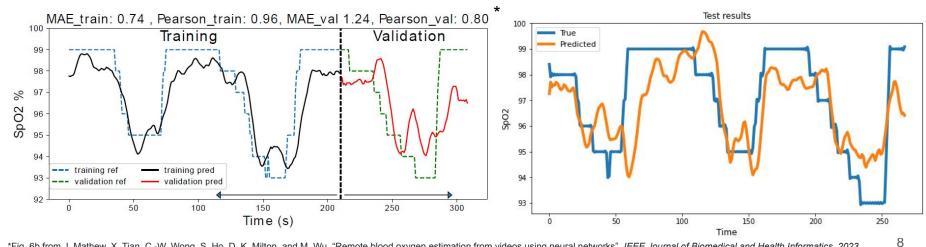


infer

X

х

- 1 recording for training/validation and 1 for testing ۰
- 2 breathing cycles for training and 1 for validation ۰
- Train multiple instances for each model and select instance with highest validation Pearson correlation

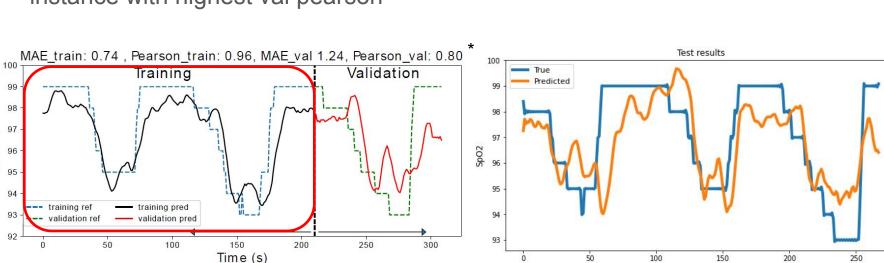


^{*}Fig. 6b from J. Mathew, X. Tian, C.-W. Wong, S. Ho, D. K. Milton, and M. Wu, "Remote blood oxygen estimation from videos using neural networks", IEEE Journal of Biomedical and Health Informatics, 2023.

- 1 recording for training/validation and 1 for testing
- 2 breathing cycles for training and 1 for validation
- Train multiple instances for each model and select instance with highest val pearson

%

Sp02



*Fig. 6b from J. Mathew, X. Tian, C.-W. Wong, S. Ho, D. K. Milton, and M. Wu, "Remote blood oxygen estimation from videos using neural networks", *IEEE Journal of Biomedical and Health Informatics*, 2023.

infer

X

х

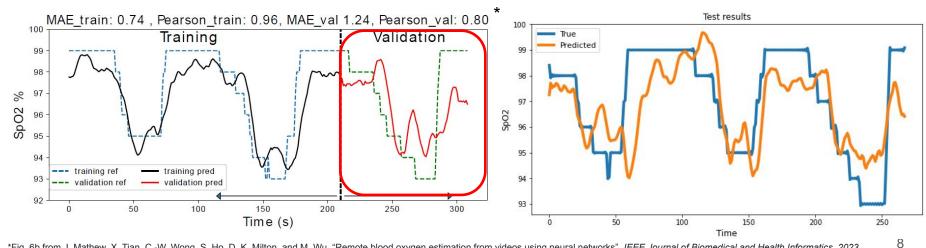
Time

infer

X

х

- 1 recording for training/validation and 1 for testing ٠
- 2 breathing cycles for training and 1 for validation ۰
- Train multiple instances for each model and select instance with highest val pearson

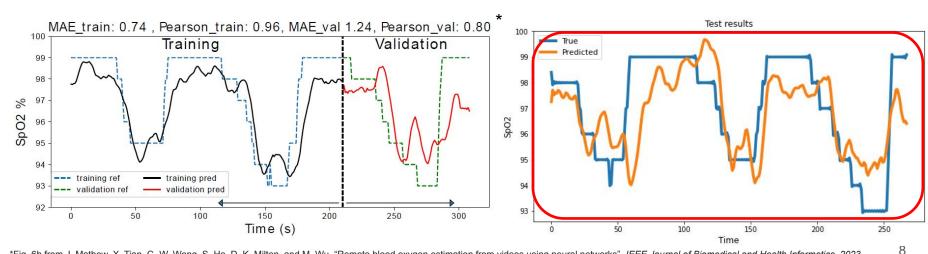


infer

X

х

- 1 recording for training/validation and 1 for testing
- 2 breathing cycles for training and 1 for validation
- Train multiple instances for each model and select instance with highest val pearson



Participant Specific Correlation Results

- Median correlation across all participants
- Models 2 and 3 achieved best performance

	Hand	Correlation		
	Mode	Median	IQR	
Model 1	PD	0.41	0.40	
(Proposed)	PU	0.39	0.37	
Model 2	PD	0.46	0.44	
(Proposed)	PU	0.41	0.32	
Model 3	PD	0.44	0.40	
(Proposed)	PU	0.41	0.46	

PU (Palm Up), PD (Palm Down)

IQR (Interquartile Range) = 3rd quartile – 1st quartile

Participant Specific Correlation Results

- Ding et al. [5] Neural network for contact-based SpO₂ prediction from video
- Scully et al. [7] Ratio-of-ratios method

	Hand	Correlation		
	Mode	Median	IQR	
Model 1	PD	0.41	0.40	
(Proposed)	PU	0.39	0.37	
Model 2	PD	0.46	0.44	
(Proposed)	PU	0.41	0.32	
Model 3	PD	0.44	0.40	
(Proposed)	PU	0.41	0.46	
Scully et al. [5]	PD	0.08	0.37	
	PU	0.19	0.24	
Ding et al. [7]	PD	0.38	0.39	
	PU	0.34	0.56	

[5] X. Ding, D. Nassehi, and E. C. Larson, "Measuring oxygen saturation with smartphone cameras using convolutional neural networks," *IEEE J Biomed. Health Info.*, 2018.
[7] C. G. Scully, J. Lee, J. Meyer, et al., "Physiological parameter monitoring from optical recordings with a mobile phone," *IEEE Trans. Biomed. Eng.*, 2011.

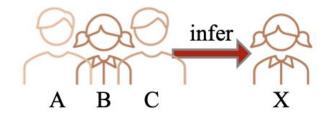
Participant Specific MAE Results

- All models outperformed Ding et al.
- Scully et al. achieves lower mean absolute error (MAE) than some models but has low correlation

	Hand	Correlation		MAE (%)		
	Mode	Median	IQR	Median	IQR	
Model 1	PD	0.41	0.40	2.12	0.91	
(Proposed)	PU	0.39	0.37	2.16	1.80	
Model 2	PD	0.46	0.44	2.09	1.32	
(Proposed)	PU	0.41	0.32	1.96	0.68	
Model 3	PD	0.44	0.40	1.93	1.11	
(Proposed)	PU	0.41	0.46	1.81	1.83	
Saulla d 1 [5]	PD	0.08	0.37	1.94	0.92	Naïve predictor is not
Scully et al. [5]	PU	0.19	0.24	2.01	0.80	useful
Ding et al. [7]	PD	0.38	0.39	3.25	2.85	useiui
Ding et al. [7]	PU	0.34	0.56	3.40	3.16	

Leave-One-Participant-Out Experiments

- Aim: To test generalizability to unseen participants
- Train on all participant recordings but leave out test participant
- Participant-wise cross-validation



Leave-One-Out Correlation Results

- More difficult than participant-specific case
- Doing channel combination first may be more generalizable

	Hand	Correlation		
	Mode	Median	IQR	
Model 1	PD	0.33	0.42	
(Proposed)	PU	0.46	0.36	
Model 2	PD	0.15	0.50	
(Proposed)	PU	0.33	0.39	
Model 3	PD	0.23	0.38	
(Proposed)	PU	0.27	0.31	

Leave-One-Out Correlation Results

• Proposed models outperform state-of-the-art

	Hand	Correlation		
	Mode	Median	IQR	
Model 1	PD	0.33	0.42	
(Proposed)	PU	0.46	0.36	
Model 2	PD	0.15	0.50	
(Proposed)	PU	0.33	0.39	
Model 3	PD	0.23	0.38	
(Proposed)	PU	0.27	0.31	
Soully at al [5]	PD	0.05	0.43	
Scully et al. [5]	PU	0.01	0.54	
Ding et al. [7]	PD	0.11	0.56	
Ding et al. [7]	PU	0.26	0.42	

Leave-One-Out MAE Results

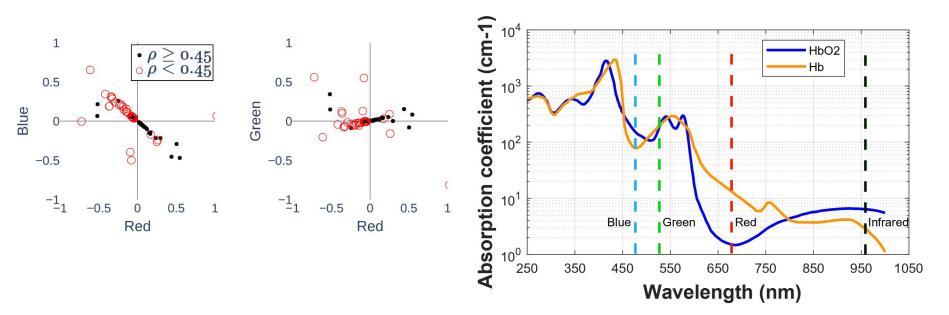
- More difficult than participant-specific case
- Features extracted after channel combination maybe more generalizable

	Hand	Correlation		MAE (%)	
	Mode	Median	IQR	Median	IQR
Model 1	PD	0.33	0.42	2.33	1.07
(Proposed)	PU	0.46	0.36	1.97	0.80
Model 2	PD	0.15	0.50	2.43	0.94
(Proposed)	PU	0.33	0.39	2.08	0.73
Model 3	PD	0.23	0.38	2.48	1.18
(Proposed)	PU	0.27	0.31	2.02	1.03
Scully et al. [5]	PD	0.05	0.43	2.08	0.65
	PU	0.01	0.54	2.08	0.60
Ding et al. [7]	PD	0.11	0.56	3.19	1.61
	PU	0.26	0.42	2.43	1.22

Naïve predictor is not useful

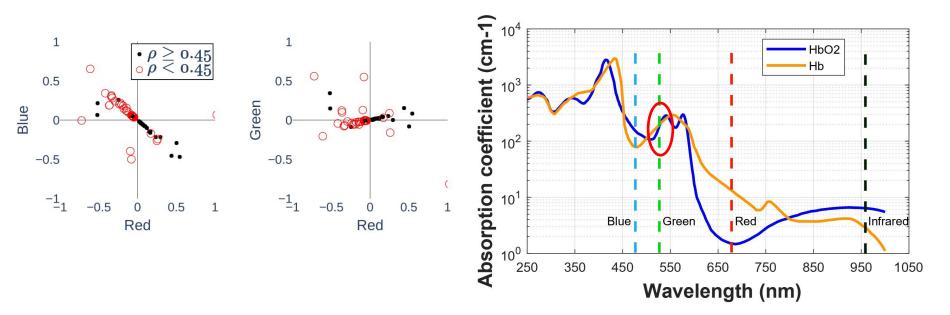
Channel Combination Visualization

Visualized model weights



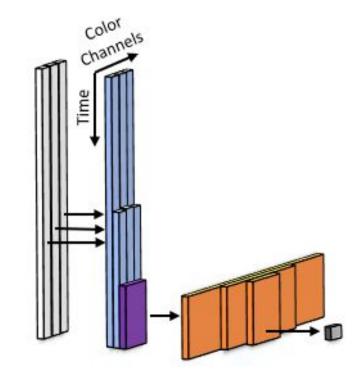
Channel Combination Visualization

· Green channel is given low weight



Conclusion

- Measure blood oxygen without physical contact utilizing smartphone videos
- Developeded novel neural network architectures which outperformed state-of-the-art methods
- Showed that learned RGB weights are consistent with optophysiological methods.



Remote Blood Oxygen Estimation From Video Using Neural Networks

Joshua Mathew,*¹ Xin Tian,*² Chau-Wai Wong,¹ Simon Ho,³ Donald K. Milton,² Min Wu²

¹ NC State Univ., ² Univ. of Maryland, College Park, ³ Univ. of Maryland School of Medicine * Equal contributions

