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ABSTRACT

Recent studies showed that subtle changes in human’s face
color due to the heartbeat can be captured by digital video
recorders. Most existing work focused on still/rest cases or
those with relatively small motions. In this work, we propose
a heart-rate monitoring method for fitness exercise videos.
We focus on designing a highly precise motion compensation
scheme with the help of the optical flow, and use motion in-
formation as a cue to adaptively remove ambiguous frequency
components for improving the heart rates estimates. Experi-
mental results show that our proposed method can achieve
highly precise estimation with an average error of 1.1 beats
per minute (BPM) or 0.58% in relative error.

Index Terms— heart rate, photoplethysmography (PPG),
fitness exercise, optical flow

1. INTRODUCTION

Contact-free monitoring of the heart rate using videos of hu-
man faces is a user-friendly approach compared to conven-
tional contact based ones such as electrodes, chest belts, and
finger clips. Such monitoring system extracts from a face
video a 1-D sinusoid-like face color signal that has the same
frequency as the heartbeat. The ability to measure heart rate
without touch-based sensors is attractive and gives it poten-
tials in such applications as smart health and sports medicine.

Heart rate from videos was first demonstrated feasible
in [1], and since then most work [2–12] has been focusing on
still/rest cases or those with relatively small body motions.
In contrast, less work [13–15] has been on large motion sce-
narios such as fitness exercises. In [13], the authors did a
proof-of-concept study showing that after using block-based
motion estimation for a cycling exercise video, a periodic sig-
nal can be extracted from the color in the face area. However,
it was not verified against a reference signal and the accuracy
of the estimated heart rate was not quantitatively examined.
In [8, 14, 15], the authors built resilience against the motion
induced illumination changes by finding a particular direction
in the 3-D space of the RGB channels that was the least af-
fected. They exploited the fact that illumination changes due
to the face motion and the heartbeat have different causes,
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Fig. 1: Flowchart for the proposed heart rate monitoring method for
fitness exercise videos.

and analyzed using light reflection characteristics and face-
camera geometry. However, their use of the Viola–Jones face
detector [16] and/or face-level affine transform did not pre-
cisely align faces at the pixel level, which could add noise to
the extracted face color signals.

In this work, we aim to examine the best possible perfor-
mance for fitness exercise videos when the registration error is
minimized for the color-based heart-rate monitoring method.
A block diagram of our proposed method is shown in Fig. 1.
We minimize the registration error using pixel-level optical
flow based motion compensation [17, 18] that is capable of
generating almost “frozen” videos for best extracting the face
color signals. We use the RGB weights proposed in [14] to
resist unwanted illumination changes due to motion. We fo-
cus on the fitness scenarios that heart rate often wildly vary at
different stages of fitness exercises, and present our results in
widely adopted metrics [6, 12, 19] for comparison purpose.

The rest of the paper is organized as follows. In Sec-
tion 2, we propose our video-based heart-rate monitoring
method specially designed for fitness exercises. In Section
3, we present the experimental results with comparisons if
some modules were otherwise replaced or turned off. Finally,
Section 4 concludes the paper.



2. PROPOSED METHOD

Fitness exercise videos may contain large and periodic mo-
tions. Our proposed method focuses on a highly precise mo-
tion compensation scheme to allow generating a clean face
color signal to facilitate the latter analysis steps, and uses the
resulting motion cue as the guide to adaptively remove am-
biguous frequency components that can be very close to the
heart rate.

2.1. Precise Face Registration

A highly precise pixel-level motion compensation is a crucial
step toward generating a clean face color signal. We use an
optical flow algorithm to find correspondences of all points
on the faces between two frames. Optical flow uses gradient
information to iteratively refine the estimated motion vector
field [17]. To avoid being trapped in local optima, we intro-
duce a prealignment stage to bring the face images roughly
aligned before conducting a fine-grain alignment using opti-
cal flow.

We use the Viola–Jones face detector [16] to obtain rough
estimates of the location and size of the face. We clip and
resize the face region of each frame to 180 pixels in height,
effectively generating a prealigned video for the face region.

The prealignment significantly reduces the lengths of mo-
tion vectors, which in turn makes results of optical flow more
reliable. In our problem, two face images are likely have a
global color difference due to the heartbeat. In order to con-
duct a precise face alignment, instead of using the illumina-
tion consistency assumption that is widely used, we assume
more generally that the intensity I of a point in two frames
are related by an affine model, namely,

I(x+ ∆x, y + ∆y, t+ 1) = (1− ε) I(x, y, t) + b (1)

where ε and b control the scaling and bias of the intensi-
ties between two frames. Both of them are usually small.
Traditional techniques tackling the illumination consistency
cases such as Taylor expansion and regularization can be sim-
ilarly applied. Our mathematical analysis showed that omit-
ting the illumination change due to the heartbeat, and apply-
ing a standard optical flow method leads to a bias term that is
at the same order magnitude compared to the intrinsic error
(in terms of standard deviation) of the optical flow system.
We therefore use Liu’s optical flow implementation [18] in
our work.

We divide each video into small temporal segments with
one frame overlaping for successive segments. We use the
frame in the middle of the segment as the reference for opti-
cal flow based motion compensation. This would ensure two
frames being aligned do not have significant occlusion due to
long separation in time. Fig. 2 shows a couple of face im-
ages from a same segment before and after optical flow based
motion compensation using the same reference.
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Fig. 2: Face images from a same video segment before and after
optical flow based motion compensation using the same reference
face.

2.2. Segment Continuity and Cheek Regions Selection

With the precisely aligned face videos in short segments, we
can estimate the face color for each frame by taking a spatial
average over pixels of the cheek for R, G, and B channels,
respectively. We call the three resulting 1-D time signals the
face color signals.

When concatenating segments into color signals, the last
point of the current segment and the first point of the next
segment may have different intensities because they corre-
spond to the same frame whose motion compensation were
conducted with respect to two different references. To address
this problem, the difference of the intensity between the two
points is calculated and the resulting value is used to bias the
signal of the next segment in order to maintain the continuity.

The face color signals contain color change due to the
heartbeat, and illumination change due to face motions such
as tilting. The green channel was used because it corresponds
to the absorption peak of (oxy-) hemoglobin [1] that changes
periodically as the heartbeat, and source separation methods
such as the independent component analysis (ICA) were also
used to separate the heartbeat component [3]. In [14], the
authors proposed using the fixed linear weights (−1, 2,−1)
for R, G, B channels to best retain the heartbeat component
while compensating the motion induced illumination change.
In our experiments, we found that the fixed weights approach
outperforms all other approaches, and we therefore adopt it in
our proposed method.

To determine the cheek regions for conducting spatial av-
eraging, we construct two conservative regions that do not
contain facial structures and are most upfront in order to avoid
strong motion-induced specular illumination changes. We use
facial landmarks identified by the method proposed in [20] to
facilitate the construction of the cheek regions. Each cheek
region is constructed to be a polygon that has a safe margin
to the facial structures protected by the landmarks. One ex-
ample for such selected cheek regions and corresponding face
landmarks is shown on the face in Fig. 1.

2.3. Detrending and Temporal Filtering

Illumination variation caused by passersby and/or the gradual
change of sun light can cause the face color signal to drift,
which can be problematic for Fourier-based analysis. Such
slowly-varying trend can be estimated and then subtracted



from a raw face color signal, xraw ∈ RL, whereL is the length
of the signal. The trend is assumed to be a clean, unknown
version of xraw with a property that its accumulated convexity
measured for every point on the signal is as small as possible,
namely,

x̂trend = argmin
x
||xraw − x||2 + λ||D2x||2 (2)

where λ is a regularization parameter controlling the smooth-
ness of the estimated trend, and D2 ∈ RL×L is a spare
toeplitz second-order difference matrix. The closed-form so-
lution is x̂trend = (I+ λDT

2 D2)−1xraw. Hence, the detrended
signal is xraw − x̂trend.

After detrending, we use a bandpass filter to reject the fre-
quency components that are outside a normal range of human
heart rate. The filter of choice is an IIR Butterworth with a
passband from 40 to 240 bpm.

2.4. Motion Frequency Notching

In previous stages, we have designed our method to best re-
move the impact of face motions: optical flow was used to
precisely align the faces, and a color weight vector that is least
susceptible to motion was used to reduce impact of the peri-
odic illumination change due to the face tilting. In this part,
we further apply a notch operation to remove any remaining
trace. We combine motion vectors from the face tracker and
the optical flow by addition to generate two time signals, one
for the x-direction and the other for the y-direction. For each
time bin on the spectrogram, we conduct a notch operation at
two frequency locations corresponding to the dominating fre-
quencies of the x- and y- motion components, respectively.

Spectrograms in the first column of Table 1 show that mo-
tion traces exist before notching, as highlighted by the arrows.
We notice that the motion artifacts can be even stronger than
the heart rate (HR) traces. Spectrograms in the second col-
umn of Table 1 show that the frequency notching method is
effective and the HR traces dominate after notching.

2.5. Robust Frequency Estimation

We design a robust frequency estimator for noisy face color
signals from fitness exercises. Instead of directly finding the
peak (the mode) of the power spectrum for every time bin that
may result in a discontinuous estimated heart-rate signal, we
construct a two-step process to ensure the estimated signal is
smooth.

We first find a single most probable strap from the spec-
trogram. We binarize each time bin of the spectrogram image
per the 95th percentile of the power spectrum of that bin. We
then dilate and erode the image in order to connect the broken
strap. We find the largest connected region using such stan-
dard traverse algorithm as the breadth-first search and con-
sider it as the most probable strap. A spectrogram and the
results of successive steps are shown in Fig. 3.

(a)

(b)
Fig. 3: (a) A spectrogram with weakly connected frequency strap.
(b) Results after the following operations (from top to bottom): bi-
narization using 95th percentile, dilation and erosion, and small re-
gions removal.

We finally use a weighted frequency [21] within the the
frequency range specified by the strap, Fi, as the frequency
estimate for ith time bin. Denoting the frequency estimate as
f̂HR(i), we have

f̂HR(i) =
∑
f∈Fi

wi,f · f (3)

where wi,f = |S(i, f)| /
∑

f∈Fi
|S(i, f)|, and S(i, :) is the

power spectrum at the ith bin.

3. EXPERIMENTAL RESULTS

Our proposed method was evaluated on a self-collected fitness
exercise dataset to demonstrate the efficacy on dealing with
fitness motions, and results were presented in widely adopted
metrics [6, 12, 19] in the field of heart rate monitoring from
videos.

The fitness exercise dataset has 9 videos in which 6 con-
tain human motions on an elliptical machine and the other 3
contain motions on a treadmill. Each video is about 3 min-
utes long in order to cover various stages of a fitness exercise.
Each video was captured in front of the face by a commodity
mobile camera (iPhone 6s) affixed on a tripod or held by the
hands of a person other than the test subject. The gym was
well-lit with several over-the-top florescent lights and with
diffuse daylight passing into the gym through glass walls. The
heart rate of the test subject was simultaneously monitored by



Table 1: Contrast of spectrograms before and after notching the frequencies of fitness motions (cols. 1–2). Heart rate estimates and the
ECG-based reference measurement using Polar H7 chest belt (col. 3). Video demos: http://www.mast.umd.edu/project/heart-rate.
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an electrocardiogram (ECG)-based chest belt (Polar H7) for
reference.

Each video was divided into segments of 1.5 secs in order
to guarantee small scene changes within each segment for op-
tical flow’s best performance. The regularization parameter
for the detrending on the face color signal was set to λ = 20
for 30Hz videos used in this experiment. The window length
for spectrogram was set to 10 secs with 98% overlap.

Representative results from two videos are shown in Ta-
ble 1. Column 1 and column 2 show the spectrograms for
the detrended and filtered face color signal before and after
motion information guided notching. Column 3 show the HR
estimates obtained using the robust frequency estimation al-
gorithm. We plotted the HR estimates with the reference HR,
and found that the estimates are almost unbiased and are fluc-
tuating around the reference. The relative error (MeRate) are as
low as 0.29% and 0.60% for the two videos, respectively. We
included two demos, each of which contains a raw video, a
motion compensated video, and a synchronized HR estimate
and a reference HR.

We summarize the mean and standard deviation of the er-
ror measures for all of our videos and the results are listed in
Table 1. The averaged error for the proposed method is 1.1
bpm in root mean-squared error (RMSE) and 0.58% in rela-
tive error. The performance is slightly reduced if a more com-
plicated joint blind-source separation (JBSS) approach is used
to search for the weights for R, G, B channels, instead of using
the more theoretically grounded fixed weights (−1, 2,−1).

We conducted additional experiments to check the impact
when the optical flow algorithm was disabled. In this case,
the face images were roughly aligned using the face tracker.

Table 2: Performance (in terms of mean and standard deviation
in parentheses) of proposed method and cases when some modules
were otherwise replaced or turned off.

Module combinations RMSE in bpm MeRate

tracker + JBSS (no op) 7.6 (5.7) 3.60% (2.87%)
tracker + fixed (no op) 5.6 (3.4) 2.61% (1.45%)
tracker + op + JBSS 1.3 (0.7) 0.65% (0.30%)
tracker + op + fixed (proposed) 1.1 (0.6) 0.58% (0.33%)

The reported errors in Table 2 show significant performance
reduction from 1.1 bpm to 5.6 bpm or from 0.58% to 2.61%.
The estimation error has increased about four times, which
shows that a precise alignment is a crucial step for the video-
based heart-rate monitoring method for fitness scenarios.

4. CONCLUSION

In this paper, we proposed a heart rate monitoring method
for fitness exercise videos. We focused on building a highly
precise motion compensation scheme with the help of the op-
tical flow, and used motion information as a cue to adaptively
remove ambiguous frequency components for improving the
heart rates estimates. Experimental results show that our pro-
posed method can give precise estimates at an average error
of 1.1 bpm in RMSE or 0.58% in relative error.
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