
ECE 301 (Section 001) Homework 7, Spring 2021

Problem 1 (Projection and Orthogonal Matrices)

a) Quiz 2 Follow-up (4’)

(i) Please attach the screenshot of your Quiz 2 grade.

(ii) If your score is less than 4’ or 100% (including those who missed the quiz), you
may recover at most 2’ by completing the following question.

What’s the resulting projected vector x̂ when x =
√

2[1.4, 2.4] is projected onto
vector w = [1,−1]? What’s the norm of the error/residual vector x− x̂?

b) You have learned in class that a real-valued orthogonal matrix P has the property that
PTP = PPT = I. In signal processing, often times signals are represented in complex
values. We can define for a complex-valued square matrix a similar concept called the
unitary matrix. A unitary matrix Q satisfies the property that QHQ = QQH = I,
where “H” is the Hermitian operator that is a combination of both the transpose, “T ,”
and the complex conjugate, “∗.”

(i) The discrete Fourier transform (DFT) matrix for a signal of length 3 is defined
as Q3 = [qkn]k,n∈{0,1,2}, where qkn = 1√

3
exp(−j 2π3 kn). Explicitly write out this

3-by-3 matrix. Simplify each entry but do not evaluate numerically the complex
exponentials.

(ii) Verify that Q3 is a unitary matrix.

Problem 2 (PCA on Downsampled Yale Face Database) In this problem, we will explore PCA as
a visualization tool for Yale Face Database. Download the .m files and the database. Extract
the face image files into a folder named yalefaces and put the .m files at the same level of
the folder. Open main_pca_visualization.m in Matlab.

a) Run the code of (a), explain the data structure of variable img_buffer. Set preview_img_flag
to 1, re-run the code to visually inspect the whole database.

b) Complete Matlab function [V, Lambda_mat] = PcaViaKlt(data) by implementing
PCA using eigendecomposition on a sample covariance matrix of the face data. The
detailed information about the input and outputs are given in the comments of the
incomplete function. You may use built-in function eig for eigendecomposition. If your
implementation is correct, after running the code of b), you will obtain a plot similar
to the following.

1



5 10 15 20 25

0

1

2

3

4

5

6

c) Run the code of c) to visualize a few dominating eigenvectors. Comment on whether
they reflect some characteristics of the faces you saw in a).

d) The code of d) projects each face image (coming from one of the four selected classes)
onto a 2D space. Comment on PCA’s data visualization performance in this specific
example.

Problem 3 (Linear Regression in Matrix-Vector Form) An ECE student John is doing an elec-
tronic circuits lab during which he needs to determine the conductance of a resistor using a
voltage meter, a current meter, and a DC power source. The voltage meter is connected in
parallel with the resistor and the current meter is in series with the resistor. Both meters are
analog devices so the readings recorded by John have errors. The power source is tunable
and has a range of 1 to 5 V. Each time John will try a uniformly random input voltage level
and record the readings of both voltage and current meters. Denote the voltage reading as
xi and the current reading as yi for the ith measurement. Assume the true conductance
G = 2 mΩ−1.

a) Using a linear model yi = Gxi+ei, where ei is a zero-mean noise with standard deviation
σe = 0.1 mA, simulate a dataset of n = 10 measurements. [Hint: You may use rand()

to generate a uniformly random value in [0, 1] and 0.1*randn() to generate a zero-mean
Gaussian noise with standard deviation 0.1. Throughout this problem, you may ignore
the units such as mΩ−1 and mA and focus only on the numbers.]

b) Express the linear model in a matrix-vector form. Clearly indicate the matrices/vectors
y,X,β, and e. Directly implement the formula of the least-squares (LS) estimator, β̂ =
(XTX)−1XTy, into a computer function that takes as two input vectors (x1, . . . , xn)
and (y1, . . . , yn), and output a number Ĝ. Apply your function to the simulated data.
What is the value of Ĝ? [Hint: X is a n-by-1 “matrix,” and β is a 1-by-1 “vector.”]

c) John’s friend, Tom, proposed a more intuitive estimator for the conductance: G̃ =
1
n

∑n
i=1

yi
xi

. Let’s call it “Tom’s estimator” for convenience. Write a computer function

that takes as two input vectors (x1, . . . , xn) and (y1, . . . , yn), and output a number G̃.
Apply your function to the simulated data. What is the value of G̃?

d) Generate 1,000 datasets. Repeatedly apply function written in (b) and collect 1,000 LS
estimates and calculate the sample variance of these 1,000 values.

e) Use the 1,000 datasets generated in (d). Repeatedly apply function written in (c) and
collect 1,000 Tom’s estimates and calculate the sample variance of these 1,000 values.
You should find that the LS estimator has a smaller variance than Tom’s estimator.
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Problem 4 (Machine Learning Intro Video) Watch this 10-minute video:

https://youtu.be/YH1gdd8kJXo

Write 6–8 sentences to concisely summarize machine learning and/or artificial intelligence.

Group Study (1’, bonus) Take a screenshot of the whole team with everyone’s camera capturing
his/her face. One of you will share a window showing the specific homework assignment
sheet that you are working on. Include the screenshot in your own homework submission as
Problem 5. Your screen shoot gets you 1 bonus point; your group members need to do it
separately to earn theirs.
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