ECE 301 (Section 001) Homework 1, Spring 2022

Gradescope Submission Note: When uploading your homework to Gradescope, please create links between the problems and your scanned pages, or your submission will not be graded. Click <u>here</u> for a tutorial on how to do this.

Problem 1 (Complex Numbers)

a) Evaluate and give the answer in both rectangular and polar form. In all cases, assume that $z_1 = 1 + j4$ and $z_2 = -2 + j$. As usual, z^* is the complex conjugate of z.

(a)
$$z_1^*$$
 (b) z_2^2 (c) $z_1 + z_2^*$
(d) jz_2/z_1^2 (e) z_1^{-1} (f) $z_1/(z_2 + z_1)$
(g) e^{z_2} (h) $z_1z_1^*z_2z_2^*$ (i) z_1z_2

b) Simplify the following numbers into the rectangular form:

(a) $e^{j7\pi}$ (b) $e^{j\pi/3}$ (c) $e^{j13\pi/3}$ (d) $e^{j2021\pi} - e^{j2020\pi}$

Problem 2 (Complex Variable and Function)

- a) Let $z = re^{j\theta}$, $r \ge 0$, $\theta \in \mathbb{R}$, be any complex variable. Show that:
 - (a) $zz^* = r^2$ (b) $z - z^* = 2jr\sin\theta$ (c) $(e^z)^* = e^{z^*}$ (d) $z/z^* = e^{j2\theta}$
- **b)** The following complex function $H(\omega)$ is given:

$$H(\omega) = \frac{3}{2+j\omega}, \quad -\infty < \omega < \infty.$$

Determine and sketch the magnitude and phase of $H(\omega)$.

- **Problem 3** (Geometric Series) (You may do it after attending Friday's discussion.) Prove the validity of the following expressions:
- **a)** For $\alpha \in \mathbb{R}$:

$$S_N = \sum_{n=0}^{N-1} \alpha^n = \begin{cases} N, & \alpha = 1, \\ \frac{1-\alpha^N}{1-\alpha}, & \alpha \neq 1. \end{cases}$$

(Hint: Can you use $S_N - \alpha S_N$ to solve for S_N ?)

b) For $|\alpha| < 1$:

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}.$$

c) For $|\alpha| < 1$:

$$\sum_{n=0}^{\infty} n\alpha^n = \frac{\alpha}{\left(1-\alpha\right)^2}.$$

(Hint: What happens if you differentiate S_N with respect to α ?)

d) For $a, b \in \mathbb{N}$, $\alpha \in \mathbb{R}$, and $a \leq b$, simplify the following summation:

$$S_{a:b} = \sum_{n=a}^{b} \alpha^n.$$

(Hint: Use the expression of S_N in part a) and express $S_{a:b}$ as the difference between two geometric sums.)

Problem 4 (Logarithms and Integration)

- a) Please simplify the following expressions as much as possible to arrive at primitive log expressions such as $\log_{10}(2)$, $\log_2(\pi)$, $\log_2(3)$, and then use your calculator to evaluate the final numerical results, if applicable.
 - (a) $\log_{10}(320,000)$
 - (b) $\log_2(4\pi^2/30)$
 - (c) $\log(a^{x^2})$
- b) A signal y(t) has power that is 195,000,000,000 times bigger than a signal x(t). What is this power ratio P_y/P_x in decibels?
- c) Compute the following integral:

$$y(t) = \int_0^t x(\tau) \, d\tau, \quad t \ge 0. \tag{1}$$

A graph of x(t) is given below. The line segments are straight with x(0) = 0, x(1) = 1, and x(2) = 0. Note that your solution will be a piecewise function.

