NC STATE UNIVERSITY

Overview of Modern ML Applications:
Convolutional Neural Network (CNN)

Learning objectives
o Describe the structure of CNN

o Build and train simple CNNs using a deep learning package
(Ref: Ch 9 of Goodfellow et al. 2016)

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS231n by Fei-Fei Li et al.:
http://cs23 I n.stanford.edu/ F22v2


https://www.deeplearningbook.org/
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Convolutional Neural Network (CNN)

The single most important technology that fueled the rapid
development of deep learning and big data in the past decade.
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Why is Deep Learning so Successful?

I. Improved model: convolutional layer, more layers (““deep”), simpler
activation (i.e., ReLU), skip/residual connection (i.e., ResNet), attention
(i.e., Transformer)

2. Big data: huge dataset, transfer learning
3. Powerful computation: graphical processing units (GPUs)
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Deng, Dong, Socher, Li, Li & Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” IEEE CVPR, 2009. 3
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Linear Model to Neural Network
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Fully-Connected Layer for 1D Signal
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Fully-Connected Layer for RGB Image

32x32x3 iImage -> stretch to 3072 x 1

input activation
Wax
1 10 x 3072 110
3072 X 10
weights
1 number:

the result of taking a product
between a row of W and the input
(a 3072-dimensional dot product)

(Fei-Fei Li et al., CS231n) 7
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Convolutional Layer for I1D Signal
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Convolutional Layer for 2D Matrix/Image
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Convolutional Layer for RGB Image

32x32x3 image

ox5x3 filter
32 L/
I Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”

32

(Fei-Fei Li et al., CS231n) 10
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__— 32x32x3 image

S5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wlz + b

1 number:

(Fei-Fei Li et al., CS231n) 11
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A closer look at spatial dimensions:

activation map

__— 32x32x3 image

5x5x3 filter
=

=0 i
convolve (slide) over all

spatial locations

32 28

(Fei-Fei Li et al., CS231n) 12
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For example, if we had six 5x5 filters, we’ll get six separate activation maps:

activation maps

32

Six 5x5x3 filters 28

Convolution Layer

32 28
3 6

We stack these up to get a “new image” of size 28x28x6!

(Fei-Fei Li et al., CS231n) 13
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Building Block for Modern CNN

activation maps
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CNN is composed of a sequence of convolutional layers,
interspersed with activation functions (RelLU, in most cases).

Y B

CONVW, CONVW, CONVW; 7 Y
ReLU o(") ReLU o (+) ReLU o(:)
2-95- 63 e.g. 10
X5X 5x5x6
_ 32 filters | 28 filters A
3 6 10

y = "'O'(Wg O'(WQ O'(WlX)))

Source of nonlinearity, RelLU: o(x) := max(0, x)

(Fei-Fei Li et al., CS231n) 15
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Low-level
features

VGG-16 Conv1_

(Fei-Fei Li et al.,, CS231n)

Visualization of VGG-16 by Lane Mcintosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

[Zeiler and Fergus 2013]

Linearly
separable
classifier

Mid-level
features

High-level
features
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IMAGENET Large Scale Visual Recognition Challenge

Year 2010
NEC-UIUC

Dense descriptor grid:
HOG, LBP

v

Coding: local coordinate,
super-vector

p J

Pooling, SPM

Linear SVM

[Lin CVPR 2011]

AlexNet
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Year 2014

GoogleNet

@ Pooling
@) Convolution

Softmax

@ Other

[Szegedy arxiv 2014] [Simonyan arxiv 2014]
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ResNet
Year 2015
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[He ICCV 2015]
(Fei-Fei Li et al., CS231n)
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Residual Neural Network (ResNet) (Kaiming He et al., 2015)

¢ Skip connections or shortcuts are added.
¢ They can

+ avoid “vanishing gradients”, and

+ make optimization landscape flatter.

¢ From Taylor expansion perspective, the neural
network only learns the higher-order error
terms beyond the linear term x.

¢ Has interpretations in PDE.

Layer |

|

Layey
'

Layer 3

!

& Preferred modern NN structure. y = "'0(W3 [|X+0(W2 oc(Wix))] )

g(x) 18
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When Output is Categorical / Qualitative

P e L o ]

¢ A softmax layer is needed:

& Softmax function:
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Other Essential Aspects of CNN

¢ Due to time constraints, this overview lecture covered only the
structural elements of CNNs. Other essential aspects are:

+ Cost function/loss, e.g., MSE, cross entropy.

+ How to train CNNs or estimate the weights (will only give practice
code), i.e., backpropagation (will cover in the next two lectures).
+ Practical training considerations including
* How to determine number of hidden units/channels to be used,
* How to tune learning rate and batch size, and

* When to stop training (number of epochs).

¢ For a more complete treatment on CNN, refer to the dedicate
courses such as CS231n CNNs for Visual Recognition or ECE
542/492.

20


https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
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Machine Learning (ML) and Data Science (DS)

¢ Follow-up machine learning / data science courses:
» ECE 542/492 Neural Networks (5'23)
» ECE 792-0 Advanced Topics in Machine Learning (5'23)
» ECE 592-61 Data Science (each fall)
» ECE 759 Pattern Recognition and Machine Learning (5'24)
» ECE 763 Computer Vision (524)

+ Any courses/videos on YouTube, Coursera, etc.
¢ State-of-the-art theory & applications: ICML, NeurlPS, ICLR, AAAI
¢ Data science competitions: kaggle.com

€ Programming languages for ML/DS: Python, R, Matlab

21
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Overview of Modern ML Applications:
Recurrent Neural Network (RNN)
and LSTM

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS23In by Fei-Fei Li et al.:
http://cs23 I n.stanford.edu/
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A Sequence of Identical Neural Network Modules

Force the neural nets (in green) to be the same to lower the complexity!

one to one one to many many to one many to many many to many

Output

NN
module

Input

Image Captioning Emotion Machine Translation Video

image -> seq of Classification seq of words -> seq of classification

words seq of words words at frame level
-> emotion

23
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Recurrent Neural Network (RNN): Definition

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fW(ht—la -’L’t)

h,: state, x,: input
fi: neural network

o = Why hy

24
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Recurrent Neural Network (RNN): Implementation

h, — he 1. Diagram for f.
t fW( t—1> t) Can you label the details?

ht — tanh(Whhht_l T Wmhiﬂt)

f is implemented via
- linear transforms W, and W, and
- elementwise nonlinear function tanh(-)

25



NC STATE UNIVERSITY

Recurrent Neural Network (RNN): Unrolled

Y, Ys Y3 Yr

T T ! T
ho—b-fw—hh1—rfw—>h2—rfw—b-h3—r...—th
W/ X, X, X4

26
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Example: Character-Level Language Model

Vocabulary:
[h, e, |, O]

Embeddings:

Example training

sequence:
“hello”

labels / target chars:

output layer

hidden layer

input layer

input chars:

iie!!

nI:l:l
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2.2
-3.0
41
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Vocabulary:
[h, e, |, O]

At test time, sample
characters one at a
time, feed back to
model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

"ei\

1
0
0
0
‘"

i

m: OO0 20—

i

| O=200|—»

“0

n

28
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Long Short-Term Memory (LSTM) Network

¢ RNN has the “vanishing gradient” problem!
¢ Resolved by long short-term memory (LSTM) units.

RNN LSTM

h; = tanh (W (ht_l))
Lt

o
g W (ht_1>
g It

tanh

Ct :fQCt_l —I—’é®g
hy = o ® tanh(¢;)

Q O % .

29
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An LSTM Unit [Hochreiter et al., 1997]

Ve N\
Ct-1 & G? — > -1— — Ct >
-~ f
W—( _L>® tanh A I ht—1
h
h > stack T g tan
t1 A >0 ht/ & =T By LUEG

hy = 0o ® tanh(c¢;)

30
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Overview of Modern ML Applications: LT
Transformers and BERT

Queries

Keys

Acknowledgment: Some graphics and slides were adapted from values

https://peltarion.com/blog/data-science/self-attention-video
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How to make good sense of language?

¢ Reading comprehension: If you were Google, what result(s) should
you return for “brazil traveler to usa need a visa’?

|. A webpage on U.S. citizens traveling to Brazil

2. A webpage of the U.S. embassy/consulate in Brazil

¢ Contextualization is the key!
+ A nice walk by the river bank.
+ Walk to the bank and get cash.

32
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Word Embeddings in Natural Language Processing (NLP)

WordPiece tokens: best

selling

music

artists

N \I/\I/\l/\lz

gl - L |
.01

Embedding vectors: P

Values are pretrained
9.13
-0.13

-0.09

.01

8.e7

-0.04

-@.05

-0.11

-0.25

=g B

-90.03

0.15

.00

=2&. 87

.05

0.06

0.11

0.5

0.14

-8.12

-0.04

Embedding examples: Bag of Words (BoW), Word2Vec,

-0.82

©.00

-0.85

9.05

@a.12

0.02
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Word Embeddings are Meaningful Under “+”’ and “-”

Numerical operations Semantic match
I
~ —

king + woman - man ~ queen

singing + |yesterday - today ~ sang
italy paris rome ~ france
0. 04 0.0 0.09) 0.04

+ - I~

e.81 -8.84 -g.81 a.a81

34
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Contextualization by “Attention”

a nice by the river

e.e2 e.e3 -0.808 -@.e4 FE.GI -9.82
e.e2 -@.e2 ©.83 -8.83 \‘9.84 -9.83 \ ’ 0. a2

Attention

8.29 @.48 @8.51 e.38 -9.13 @8.29 8.29 ’ \ 8.32 9.39 @.37 a8.38 E!.Eu@-‘ @.46
8.19 E'I.lE!J a.24

©.19| |-0.04| |-0.83 |o.@8 ©.15| |@.13 0.37| |e.2e| |e.34 .02
~ ~ P~ ~
promenade waterside goto cash-machine

cash

8.39

-@.88
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walk by riverbank

How does ‘“attention’”’ work?

Input embeddings

Similarity
——
measure Scalar product
— Scaling/
. Softmax
Exponential saturation __|
& normalization

Linear combination
1ized embeddings

36
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Similarity Measure via Inner Product

walk by river bank

RER.

walk by river bank
VL

37
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Exponential Saturation & Normalization via Softmax

T ‘

Scalar product

(|

1

L]
|

Scaling/
Softmax

O

38
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Contextualization via Linear Combination
| I

Weights for linear combination

by | river bank

iy

Contextualized embeddings

river/ bank/

Raw embeddings bank river

39
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walk by river bank

Key, Value, and Query

Input embeddings
¢ “Key”, “value”, and “query” are
three projections of an input
embedding to three vector e
e.g., location
subspaces.

Scalar product

¢ Each subspace represents a Koys (eg. prepositon)
unique semantic aspect.

Scaling/
Softmax

¢ The projection operators /
matrices provide trainable
parameters for Transformer
neural networks.

Linear combination

contextualized embeddings

40
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Multi-Head Attention

Keys

Querigg

Keys

Guerig

Keys

Uer,

e

Scalar progyet
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o
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¢ s
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Neural Network Training:
Backpropagation

Acknowledgment: Some graphics and slides were adapted from Profs. Jain (MSU), Min

Wu (UMD), Fei-Fei Li (Stanford)
Some figures are from Duda-Hart-Stork textbook, Fei-Fei Li’s slides
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3-Layer Neural Network Structure

® A single “bias unit” is connected to each unit in addition to the input units

d d
¢ Net activation: net; = inwﬁ W, = le.wﬁ = w;. X,
i=1 i=0
where the subscript i indexes units in the input layer, j indexes units in the
hidden layer;
Zg
w;; denotes the input-to-hidden layer weights at hidden unit ;.

+ In neurobiology, such weights or connections are
called “synapses”

4 Each hidden unit emits an output that is
a nonlinear function of its activation

y;=f(net)
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Training Neural Networks / Estimating Weights

* Notations: 7, ~ the kth target (or desired) output,
z, ~ the kth estimated/computed output with k =1, ..., c.
w;; ~ weight of the network

e Squared cost func: J(w)=lzc:(l‘k -z,) =1Ht—zH2
2 k=1 2

* Learning based on gradient descent by iteratively updating the weights:

w(m + 1) =w(m) + Aw(m),
Aw = —ﬂa—J

* The weights are initialized with random values, Oow
and updated in a direction to reduce the error.

* Learning rate, 77, controls the step size of the update in weights.

45
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Gradient Descent
W 2

original W

e

negative gradient direction

Figure source: Stanford CS231n by Fei-Fei Li 47
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Efficient Gradient Calculation: Backpropagation

¢ Computes 0/ /0w;; for a single input-output pair.

¢ Exploit the chain rule for differentiation, e.g.,

oJ _aJ Oy, One,
ow, oy, .anetj . ow ;

Jt

¢ Computed by forward and backward sweeps over the network,
keeping track only of quantities local to each unit.

¢ lIterate backward one unit at a time from last layer.
Backpropagation avoids redundant calculations.

48
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Backpropagation (BP): An Example

Backpropagation: a simple example

f(z,y,2) = (z +y)z
e.g.x=-2,y=95,z=+4

_ 9 . Oq
qg=+Yy g—lsa—l
of of
f=gqz 0= %72 4
~Of of Oof
Want: oz Dy’ Bz

Figure source: Stanford CS231n by Fei-Fei Li 49
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Zy

Network Learning by BP (cont’d)

output k

+ Error on hidden-to-output weight: Lo fr Nt vy
oJ _ oJ anetk —_5 anetk -1. % hidden
= . ==—0,
ow, Onet, 0w, ow,; L
+ J,, the sensitivity of unit k : s __ % % put
describes how the overall error changes with ET e
. . .9 . r k
the activation of the unit’s net activation X, Xs
oJ oJ Oz
S, =— = —=(t,—z,)f (net,)

Onet, 0z, Onet,

+ Since net, = w/'y, we have o _,

ow,;

J

+ Summary I: weight update (or learning rule) for the hidden-to-output
weight is:

Awy = 1 (4, —zp) [ (net) y;= 11 6,y

50
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Zy

Network Learning by BP (cont’d)

output k

+ Error on input-to-hidden weight:

oJ _oJ Oy anet]. s o ! hiddenj
ow .. 6 anet aw

J Ji
% % input i
0z,

* chain rule:

.8 I , c
- = | — (t -7z ) ]:— (t -7z % X, X,
6yj ayj|:2; £ ; Lo 6].
=—20:(t -2 ) %, anet ——Z(t -z, )f' (net, )w
k=1 ¢ “ 5netk Y ; k ke 77" ki

+ Sensitivity of a hidden unit:
(Similarly defined as earlier) 0y = anet = f'(net )Z Wi O

+ Summary 2: Learning rule for the input-to-hidden weight is:
AWji = n[f’(netj)ZWkﬂk]J X = 775]xl

6]- 51
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Sensitivity at Hidden Node

hidden

- OO0

Figure 6.5: The sensitivity at a hidden unit is proportional to the weighted sum of the

sensitivities at the output units: §; = f'(net;) Z wy;0r. The output unit sensitivities
k=1
are thus propagated “back” to the hidden units. 52
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BP Algorithm: Training Protocols

¢ Training protocols:
+ Batch: Present all patterns before updating weights

+ Stochastic: patterns/input are chosen randomly from training set; network weights
are updated for each pattern

+ Online: present each pattern once & only once (ho memory for storing patterns)

4 Stochastic backpropagation algorithm:
Begin initjalize n,; w, criterion thres, n, m < @
dom«<m+1
X™ < randomly chosen pattern
Wi; ¢ Wy; + NO5Xy5 Wiy < Wiy + MOy
until ||VJ(w)|| < thres
return w

53
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BP Algorithm: Stopping Criterion

¢ Algorithm terminates when the change in criterion function
J(w) is smaller than some preset thres
+ Also exist other stopping criteria with better performance

¢ A weight update may reduce the error on the single pattern
being presented, but can increase the error on the full training
set

+ In stochastic backpropagation and batch propagation, we should make
several passes (epoches) through the training data

54
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Learning Curves

+ Before training starts, the error on
the training set is high; as the learning
proceeds, error becomes smaller

+ Error per pattern depends on the
amount of training data and expressive

o cpochs

power (e.g. # of weights) in the network L2 3 o4 5 6 7 8 9 10
. FIGURE 6.6. A learning curve shows the criterion function as a function of the amount
* Ave rage error on an |nde pe nd ent test of training, typically indicated by the number of epochs or presentations of the full train-
ing set. We plot the average error per pattern, that is, 1/n E::_J,,. The wvalidation error
1 1 TaY] and the test or generalization error per pattern are virtually always higher than the train-
Set IS always h Igher than On the tral nlng ing error. In some protocols, training is stopped at the first minimum of the validation
. . set. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification.

set, and it can decrease or increase Copyright © 2001 by John Wiley & Sons, inc.

+ Avalidation set is used in order to decide when to stop training:

» Avoid overfitting the network and decrease the power of the classifier’s
generalization

“Stop training when the error on the validation set is minimum”
55
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Practical Considerations: Learning Rate
¢ Learning Rate

+ Small learning rate: slow convergence

+ Large learning rate: high oscillation and slow convergence

J
J 77<770pt MN="Nopt J Topt <n<2nopt J n>2'r}opt

w w w w

~

Figure 6.18: Gradient descent in a one-dimensional quadratic criterion with different
learning rates. If 7 < 7,,¢, convergence is assured, but training can be needlessly
slow. If = nopt. a single learning step suffices to find the error minimum. If
Nopt < 11 < 21jopt, the system will oscillate but nevertheless converge, but training is

needlessly slow. If 1 > 2n4,:. the system diverges.
56
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