

Overview of Modern ML Applications: Diffusion Models

Learning objectives:

- Be able to explain the principle of diffusion models and name common applications.
- Be able to follow the key derivation steps of diffusion models.

Acknowledgment: This slide deck was adapted from <u>this CVPR 2023 tutorial</u> by Song, Meng, and Vahdat. [Video recording]

ECE 411 Introduction to Machine Learning, Dr. Chau-Wai Wong, NC State University.

Applications for Generative Models

Art & Design

Content Generation

Representation Learning

Entertainment

Diffusion Model: Basic Idea

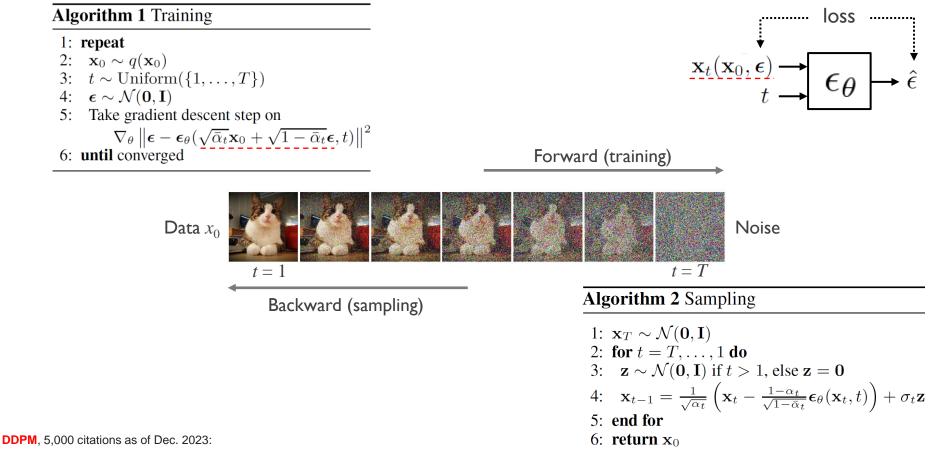
- Goal: Learning to generate by denoising.
- Diffusion model contains two processes:
 - + Forward diffusion: Gradually adds noise and learns a denoising net.
 - + Backward denoising: Reconstruct data via learned denoising net.

Forward: diffusion process (training)

Backward: denoising process (sampling)

Data

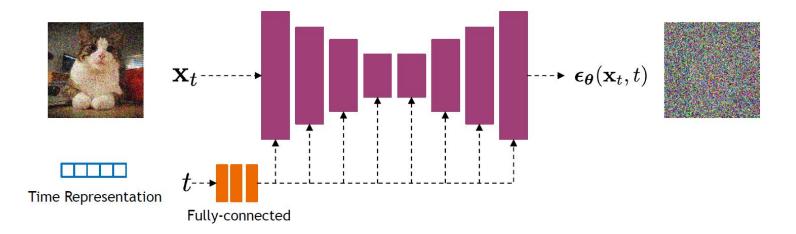
Diffusion Model: Algorithmic Perspective



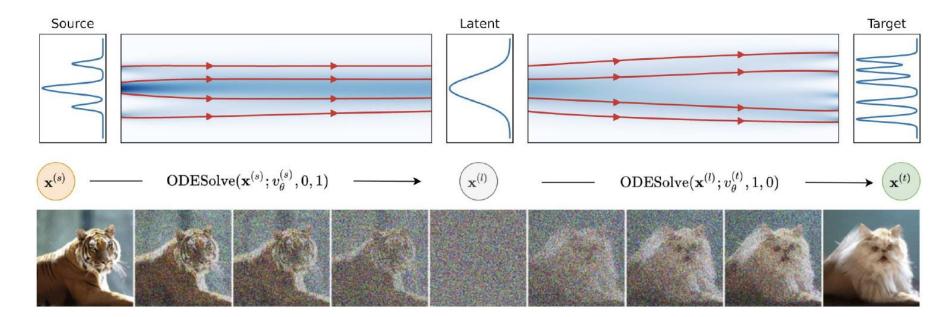
Ho, J., Jain, A., and Abbeel, P, "Denoising diffusion probabilistic models," NeurIPS, 2020.

Diffusion Model: Implementation Details

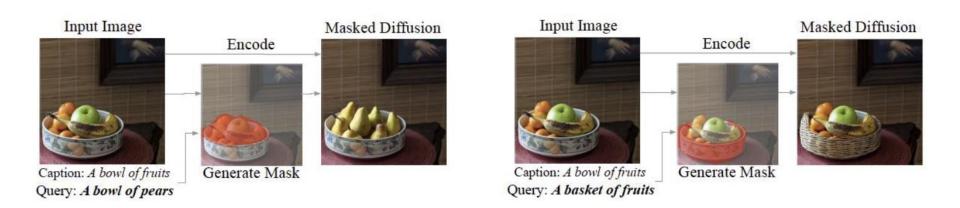
- Diffusion models often use U-Net with ResNet blocks and self-attention layers.
- Time representation: Sinusoidal positional embeddings or random Fourier features.
- Time is fed to the residual blocks using (i) simple spatial addition or (ii) adaptive group normalization layers (Dharivwal & Nichol, 2021).



Ex: Style Transfer



Ex: Semantic Editing with Mask Guidance (DiffEdit)



User-provided mask not needed: Model generates a mask based on caption & query.

Ex: Prompt-to-Prompt Image Editing w/ Cross Attention Control

"The boulevards are <u>crowded</u> today."

"Photo of a cat riding on a breycle."

"Landscape with a house near a river and a rainbow in the background"

"My fluffy bunny doll."

"a cake with decorations."

"Children drawing of a castle next to a river."

Ex: Personalization with Diffusion Models

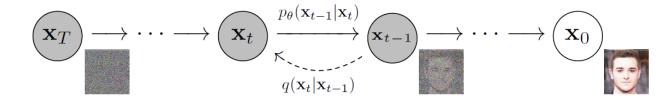
Ex: Optimizing Text Embedding (Textual Inversion)

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., Chechik, G., and Cohen-Or, D., "An image is worth one word: Personalizing text-to-image generation using textual inversion," ICLR, 2023.

Mathematical / Probabilistic Formulation

- igstarrow Raw data model: $q(\mathbf{x}_0)$, where q denotes a PDF
- Diffusion model (parameterized by θ): $p_{\theta}(\mathbf{x}_0) \coloneqq \int p_{\theta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$

Note $\mathbf{x}_{0:T} = \mathbf{x}_0, \ldots, \mathbf{x}_T$

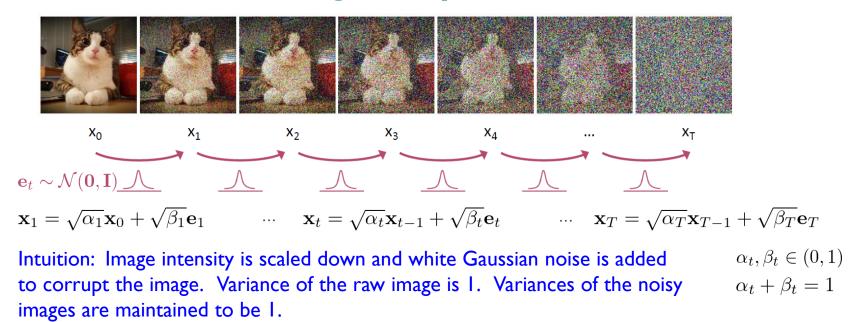


 $p(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Note the pipeline is horizontally flipped.

 \mathbf{x}_T is Gaussian distributed w/ mean $\mathbf{0}$ and covariance \mathbf{I}

Forward Diffusion: Single Step



Alternatively, one-step conditional distribution (1st-order Markov chain) can be written as:

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Forward Diffusion: Arbitrary Steps

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \ \epsilon \quad \text{ where } \ \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \quad \bar{\alpha}_t = \prod_{i=1}^t \alpha_i$$

Validation for
$$\mathbf{x}_2$$
:

$$\mathbf{x}_2 = \sqrt{\alpha_2}\mathbf{x}_1 + \sqrt{\beta_2}\mathbf{e}_2$$

$$= \sqrt{\alpha_2}\left(\sqrt{\alpha_1}\mathbf{x}_0 + \sqrt{\beta_1}\mathbf{e}_1\right) + \sqrt{\beta_2}\mathbf{e}_2$$

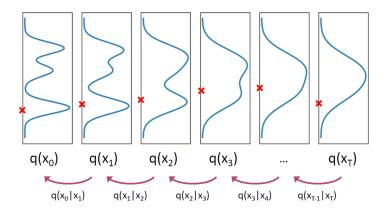
$$= \sqrt{\alpha_2}\sqrt{\alpha_1}\mathbf{x}_0 + \left(\sqrt{\alpha_2}\sqrt{\beta_1}\mathbf{e}_1 + \sqrt{\beta_2}\mathbf{e}_2\right)$$

$$= \sqrt{\overline{\alpha}_2}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_2}\mathbf{e}'_2$$
Data
$$\int_{a_1}^{b_2} \mathbf{a}_1 = \sqrt{\alpha_2} \int_{a_2}^{b_2} \mathbf{a}_2 = \sqrt{\alpha_2} \int_{a_1}^{b_2} \mathbf{a}_2 = \sqrt{\alpha_2} \int_{a_2}^{b_2} \mathbf{a}_2 = \sqrt{\alpha_2} \int_{a_2}^{b_$$

Alternatively, one can write: $q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I}))$ $\beta_t \in (0, 1)$ ensures that for large T (e.g., T = 1000), $\bar{\alpha}_T \to 0$ and $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I}))$

Different Deter Distributions

Backward Denoising



Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: for $t = T, ..., 1$ do
3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = \mathbf{0}$
4: $\mathbf{x}_{t-1} = \mu_{\theta}(\mathbf{x}_t, t) + \sigma_t \mathbf{Z}$ Step-by-step
5: end for
6: return \mathbf{x}_0

Sample $\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Iteratively sample $\mathbf{x}_{t-1} \sim q(\mathbf{x}_{t-1}|\mathbf{x}_t)$

True Denoising Dist.

Can we approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$? Yes, we can use a Normal distribution if β_t is small in each forward diffusion step.

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \underline{\mu_{\theta}}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$$

Use NN as a function approximator

Note: 1. If random variables are jointly Gaussian, then any conditional distribution is also Gaussian. 2. x_0 is not Gaussian, so approximation is needed.

What and How to Train?

• Due to the following relation, may use another network to approximate $\epsilon_{\theta}(\mathbf{x}_t, t)$ instead of $\mu_{\theta}(\mathbf{x}_t, t)$:

$$\mu_{\theta}\left(\mathbf{x}_{t},t\right) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \epsilon_{\theta}\left(\mathbf{x}_{t},t\right)\right)$$

$$\ell = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), t \sim \mathrm{U}[1,T], \epsilon \sim \mathcal{N}(\mathbf{0},\mathbf{I})} \left\| \epsilon - \epsilon_\theta \left(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t \right) \right\|_2^2 = \mathbf{x}_t$$

Forward Diffusion: Forming a Training Data Pair

- Step I: Draw an image \mathbf{x}_0 from $q(\cdot)$
- Step 2: Pick a time step t
- Step 3: Create a noisy image $\mathbf{x}_t \sim q(\mathbf{x}_t \mid \mathbf{x}_0)$ by fast-forwarding t steps via

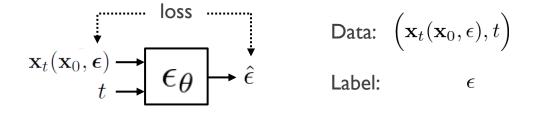
$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \ \epsilon$$

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

5: Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t)$$



 $\|^2$

BTW, OpenAl Uses a Slightly Different Loss

DDPM (Ho et al., 2020)

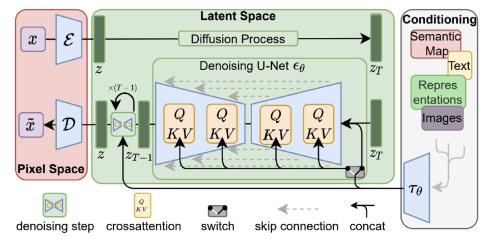
DALL-E 2 (Ramesh et al., 2022)

One-step denoising w/ knowledge of step t

Ho, J., Jain, A., and Abbeel, P, "Denoising diffusion probabilistic models," NeurIPS, 2020. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M., "Hierarchical text-conditional image generation with CLIP latents," arXiv:2204.06125, 2022.

Latent/Stable Diffusion

 Idea: Use an encoder to map the input data to an embedding space so that denoising diffusion is done in the latent space.



Advantages:

- Embeddings are closer to normal distribution => More correct modeling assumption, simpler denoising, faster synthesis.
- Latent space => More expressivity and flexibility in design.
- Tailored Autoencoders => Application to any data type (graphs, text, 3D data, etc.)

Conditioning the Diffusion Models

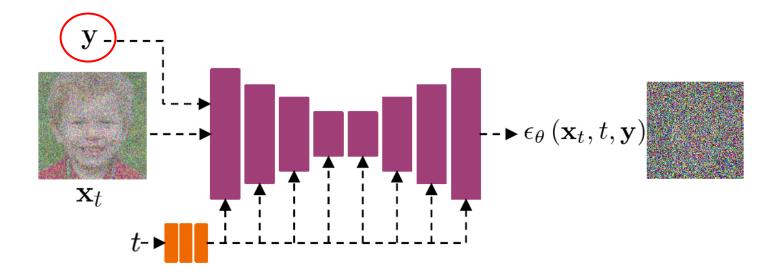
DALL·E 2

"a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese"

IMAGEN

"A photo of a raccoon wearing an astronaut helmet, looking out of the window at night."

Treating Side Information y as Another Input



$$\ell = \mathbb{E}_{(\mathbf{x}_0, \mathbf{y}) \sim q(\mathbf{x}_0, \mathbf{y}), t \sim \mathrm{U}[1, T], \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left\| \epsilon - \epsilon_{\theta} \left(\mathbf{x}_t, t, \mathbf{y} \right) \right\|_{2}^{2}$$