
Topics on Machine Learning

ECE 301 Linear Systems



Machine Learning:  An Overview

 Unsupervised learning:
 Learns from a set of unlabeled

data to discover patterns, 
without human supervision.

We’ll cover principal 
component analysis (PCA).

 Supervised learning:
 Learns an input–output mapping based on 

labeled data.
We’ll cover linear 

regression and neural
networks.

2(Li and Russakovsky, 2013)

(James, Witten, Hastie, & Tibshirani, 2013)



Machine Learning Topics and Learning Objectives
 Topic 1: Linear algebra

 Explain linear algebra concepts such as linear independence, vector space, 
and orthogonal basis

 Conduct eigendecomposition for symmetric matrices using Matlab

 Topic 2: Principal component analysis (unsupervised learning)
 Explain the two equivalent goals of PCA
 Implement the PCA algorithm and visualize the results

 Topic 3: Linear regression and prediction (supervised learning)
 Interpret regression problem mathematically and geometrically
 Apply linear regression to learning problems without overfit

 Topic 4: Convolutional neural network (CNN)
 Describe the structure of CNN
 Build and train simple CNNs using a deep learning package 3



Linear Algebra

Learning objectives
o Explain linear algebra concepts such as linear independence, vector space, 

and orthogonal basis
o Conduct eigendecomposition for symmetric matrices using Matlab
(Refer to ECE 220’s textbook for a review on vector and matrix.  A comprehensive treatment of 
linear algebra can be found in Scheffe’s appendices, available on the library’s course reserves.)

https://www.dropbox.com/s/0budechw7dj2y4y/ScheffeHenry_AppendicesIandII.pdf?dl=0


Linear Algebra Review:  Vector
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Linear Algebra Review:  Vector (cont’d)
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Linear Algebra Review:  Matrix
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Identity 
matrix



Linear Algebra Review:  Matrix (cont’d)
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column 𝑙𝑙

row 𝑘𝑘

𝐀𝐀(𝑘𝑘, : ) 𝐁𝐁(: , 𝑙𝑙)

-



Linear Algebra Review:  Matrix (cont’d)
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Motivation:  Linear Algebra for Discrete Convolution 
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Ex: 

length = 7 length = 3 length = ?

Matrix-vector form:



 Given                       . Defs:

 For “linearly dependent” case (when             ) , we may write:

 Ex: 

(linearly dependent)

(linearly independent)

Linear Independence of a Set of  Vectors

11

Why? 



Linear Independence of a Set of  Vectors (cont’d)

 Ex:

 Ex: 

12



Vector Space

 Def:  Vector space:  A set, , of all vectors that are linear 
combination of              , i.e., 

’s are said to span the vector space, i.e., 

 Ex: 

13



Basis for  Vector Space

 Def:  A basis for V is a set of linearly independent vectors that span V.

 Ex:  Q1. What is V ?  Q2. Are vectors linearly independent?

14



Basis for  Vector Space

15

yes yes

yes no

 Def:  A basis for V is a set of linearly independent vectors that span V.

 Ex:  Q1. What is V ?  Q2. Are vectors linearly independent?



Dimension of  Vector Space

 Def:  The dimension of vector space V is the number of vectors in 
any/a basis for V (or the # of independent vectors in V).

 Column/row rank:  The dimension of column/row vector space, 
respectively.

 Ex:  What’s the column rank of matrix

It’s just another way to ask: what’s the dimension of vector space

16



Dimension of  Vector Space (cont’d)

 Approach 1:  By observation, we notice that any (and only) two 
pairs of vectors spanned V are linearly independent. Hence, we can 
immediately write out at least three bases: 

Hence, the column rank of X or dimension of vector space V is 2.

 Approach 2:  Define the three vectors to be               , respectively.

17

or or

they are 
linearly independent. 
So the dim/rank is 2.



Projection of a Vector on a Unit Vector

 Project a vector 𝐱𝐱 on a unit vector 𝐮𝐮:

 Projection length is 𝐮𝐮𝑇𝑇𝐱𝐱. (a number, with sign)

 Projected vector is 𝐮𝐮𝑇𝑇𝐱𝐱 𝐮𝐮. (a scaled vector along 𝐮𝐮)

 Proof (projection length): 

18



Projection One Vector on Another
 Project a vector 𝐱𝐱 on a vector 𝐲𝐲:

 Projection length is 𝒚𝒚𝑇𝑇𝐱𝐱/ 𝒚𝒚 . (a number, with sign)

 Projected vector is 𝒚𝒚𝑇𝑇𝐱𝐱 𝒚𝒚/ 𝒚𝒚 𝟐𝟐. (a scaled vector along 𝐲𝐲)

 Proof (projected vector): 
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Projection One Vector on Another
 Project a vector 𝐱𝐱 on a vector 𝐲𝐲:

 Projection length is 𝒚𝒚𝑇𝑇𝐱𝐱/ 𝒚𝒚 . (a number, with sign)

 Projected vector is 𝒚𝒚𝑇𝑇𝐱𝐱 𝒚𝒚/ 𝒚𝒚 𝟐𝟐. (a scaled vector along 𝐲𝐲)

 Proof (projected vector): 

20



Projection of a Vector on a Unit Vector

 Example:
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Projection of a Vector on a Unit Vector

 Example:
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Orthonormal Basis

 Def:  A basis {a1, … , ar} for V is called orthonormal if r vectors are 
(i) pairwise orthogonal and (ii) have unit norms.

 Ex: Given a vector space 
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Orthonormal Basis

 Def:  A basis {a1, … , ar} for V is called orthonormal if r vectors are 
(i) pairwise orthogonal and (ii) have unit norms.

 Ex: Given a vector space 

24

Basis
Not orthogonal
Not unit vectors

Basis
Not orthogonal
Not unit vectors

Basis w/ orthogonal vectors. 
Can normalize [1 0 1]T to 
obtain an orthonormal basis.

Not even a basis.
Why???



Orthogonal Matrix (or Orthonormal Matrix)

 Def:  A square matrix P is orthogonal if and only if its columns (or 
rows) constitute an orthonormal basis.

 Properties:
 PTP = PPT = I
 P−1 = PT

 Ex: 

25

(Block trick)

(Direct evaluation)



Eigenvector and Eigenvalue

 Def:  Let A be an n-by-n matrix.  A nonzero vector v is called an 
eigenvector of A if Av = λv. Here, λ is called an eigenvalue of A, and v
is eigenvector corresponding to eigenvalue λ.

 Prefix “eigen” means “characteristic.” 

 The characteristic is of A, not of v.

 Physical interpretation: v is invariant to operator A, which means that 
A acts on v can only change its length (and sign) but not orientation.

 Ex: 

26



Eigendecomposition for Symmetric Matrices

 Def:  A square matrix A is symmetric if A = AT.
 Thm:  A p-by-p symmetric matrix R can be diagonalized by an 

orthogonal matrix V = [v1, … , vp]. The following statements are 
equivalent:

27

1. 2.

3.



Eigendecomposition Using Matlab

 Ex: Use Matlab to decompose matrix 
 Source code: 

 Output:

28

R = [1 4 5; 4 -3 0; 5 0 7];
[V, Lambda] = eig(R);  % use built-in function for eigendecomposition 

for j = 1 : size(Lambda, 1)
if norm(R * V(:, j) - Lambda(j, j) * V(:, j)) < 1e-5  % verify result
disp(['Eigenvector-value pair ' int2str(j) ' verified.'])

end
end

Lambda =
-6.0892         0         0

0    0.9383         0
0         0   10.1509

V =
0.5952    0.6072    0.5263
-0.7707    0.6167    0.1601
-0.2274   -0.5009    0.8351

Can you numerically verify the 3 equivalent 
expressions on the previous slide? 



Eigendecomposition by Hand (optional)

 Thm:  Eigenvalues are roots of the characteristic polynomial det(A− λI).

 Ex: 

29

Nonunique solutions 
for underdetermined 

systems



Principal Component Analysis 
(Unsupervised Learning)

Learning objectives
o Explain the two equivalent goals of PCA
o Implement the PCA algorithm and visualize the results
(Ref: 10.2 of James et al. 2013, 12.2 of Murphy 2012. Extra ref: 12.1 of Bishop 2006.)

https://www.statlearning.com/
https://ebookcentral.proquest.com/lib/ncsu/reader.action?docID=3339490


Unsupervised Learning

 Def:  Learns from a set of unlabeled data to discover interesting 
patterns.
 Visualize the data in an informative way.
 Discover subgroups among observations/variables.

 Examples: 
 Movies grouped by ratings and behavioral data from viewers.
 Groups of shoppers characterized by browsing & purchasing histories.
 Subgroups of breast cancer patients grouped by gene expressions.
 Tweets grouped by latent topics inferred from the use of words.

31



PCA:  Two Equivalent Goals

 Goals, i.e., cost/loss/objective functions, of PCA: 
(1) maximize variance, and (2) minimize error.

32(James, Witten, Hastie, & Tibshirani, 2013)



PCA Objective 1:  Maximizing Variance

 Maximize variance:  Project data onto a lower-dimensional subspace
while maximizing the variance of the projected data.

 Details: 

 Naming: 
 𝑧𝑧𝑖𝑖𝑖—score, coefficient, transformed coefficient, weight, projected values, …
 𝐮𝐮1—loading, (1st) principal component vector, …

33

Unit vector / direction 𝐮𝐮1 (to figure out!)

Projection of 𝐱𝐱𝑖𝑖 along 𝐮𝐮1

A dataset of n data points



where                            is the sample mean.

34

(Assuming all 𝐱𝐱𝑖𝑖 are already “centered,”
i.e., 𝐱𝐱𝑖𝑖 ← 𝐱𝐱𝑖𝑖 − �𝐱𝐱, ∀𝑖𝑖.)

(n−1)RXc

Xc
T

Sample variance measures spread 
of the projected data along 𝐮𝐮1. 

:

Matrix form for calculating R: 
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X_c =
-0.9229    1.0864   -1.3466    2.0556   -0.5967   -0.2758
-0.0789    1.1515   -1.6695    1.0773   -1.1415    0.6611

R =
1.7006    1.2570
1.2570    1.4040

-3 -2 -1 0 1 2 3 4

x
1

-3

-2

-1

0

1

2

3

x
2

plot(X_c(1, :), X_c(2, :), 'ko’);
xlabel('x_1'); ylabel('x_2');
axis([-3 3 -3 3]); axis equal;
hold on;

R = (X_c * X_c') / (n-1);

Source code:

Output:
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[U, Lambda] = eig(R);
eigenvalues = diag(Lambda);
color_arr = ['r', 'b'];

for k = 1 : size(U, 2)
u = U(:, k);
len = sqrt(eigenvalues(k));
plot([0 len*u(1)], [0 len*u(2)], 'LineWidth', 2, 

'color', color_arr(k));
end

-3 -2 -1 0 1 2 3 4

x
1

-3

-2

-1

0

1

2

3

x
2

U =
0.6644 -0.7474
-0.7474   -0.6644

Lambda =
0.2865 0

0    2.8181

Source code:

Output:

PC1 PC2

PC1PC2 λ1λ2



37Vector calculus cheat sheet (p. 521–527):  https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf

(Optional)

https://www.cs.cmu.edu/%7Eepxing/Class/10701-08s/recitation/mc.pdf
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PCA:  Forward Transform and Reconstruction

Contribution from 
PC2 is small

Analysis example:

Synthesis example:

Also known as Karhunen–Loeve Transform (KLT)

i) Analysis/Forward Transform: 

ii) Synthesis/Reconstruction: 



Reconstruction Using Dominant PCs

39

• Each image of 50x50 is stacked into a column vector of length 2,500.
• Sample covariance matrix will be of size 2,500x2,500.
• Eigenvectors/principal components (PCs) of length 2,500 are reshaped to 

50x50 for display. May call them “eigen-images.”

PC1 of MNISTRaw image

PC2 PC3

Recon w/ 2 PCs Recon w/ 10 PCs

Recon w/ 100 PCs Recon w/ 506 PCs

(Murphy 2012)



PCA Objective 2:  Minimizing Error

 Approximate the data points using a presentation in a lower-
dimensional subspace. 

40(James, Witten, Hastie, & Tibshirani, 2013)
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Same as the Objective 1

(Optional)

(Does this result look 
familiar?)



PCA’s Caveat:  Proper Standardization May be Needed

 If coordinates of 𝐱𝐱𝑗𝑗 = 𝑥𝑥1,𝑗𝑗 , … , 𝑥𝑥𝑝𝑝,𝑗𝑗
𝑇𝑇

have different units, maximal 
variance direction may be biased toward 𝑥𝑥𝑖𝑖,𝑗𝑗 with largest magnitude. 

 When proper standardization of coordinate/variable/feature i is needed:

42

Should standardize along the 
feature/horizontal direction 
rather than within each data point.

• Why is standardization needed in 
this case?

• Do the hand-written digit and face 
recognition need standardization?

(Bishop 2006)

p

n1



PCA:  Applications and Beyond

 PCA is lightweight yet powerful.  Should be tried before applying more 
sophisticated tools.

 Modern replacement of PCA: 

 Data visualization:  t-SNE, UMAP.

 Dimensionality reduction:  Nonlinear dimensionality reduction algorithms.

 Lossy data compression:  Data-independent transforms tailored for data 
following certain statistical behaviors.

 Feature extraction:  Topic modeling (unsupervised),  CNN self-learned 
feature extraction (supervised).

43



Linear Regression and Prediction 
(Supervised Learning)

Learning objectives
o Interpret regression problem mathematically and geometrically
o Apply linear regression to learning problems without overfit
(A comprehensive treatment of basic linear regression can be found in Scheffe Ch1, available 
on the library’s course reserves.)

https://www.dropbox.com/s/tourfs269cm8xon/scheffe_ch1.pdf?dl=0


Supervised Learning:  Classification

45Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.

Goal of classification: 
Assign a categorical/ 
qualitative label, or a 
class, to an given input.

 Given an image, it 
returns the class label.

Optionally, provide a 
“confidence score.”



Supervised Learning:  Regression

46

Goal of regression: 
Assign a number to 
each input. 

Loosely, ML people also 
call it “label.”

 Given a facial image, 
it returns the 2D 
location for each key 
point of the face.

Yi Sun, Xiaogang Wang, Xiaoou Tang, Deep Convolutional Network Cascade for Facial Point Detection, CVPR, 2013.



Supervised Learning:  Definition

 Terminologies:
 Training data:     
 Test data:          
 Learned model:

 Goal:  Given a set of training data      as the inputs, we would like 
to compute a learned model               such that it can generate 
accurate predicted outputs

from a set of new inputs                of the test data       whose 
labels                have never been taken into account when the 
model is computed. 47



Quantifying the Accuracy of Prediction

 Quantify the accuracy of the learned model by a loss function (or 
cost/objective function), based on predicted output, �𝑦𝑦𝑖𝑖, and the true 
output, 𝑦𝑦𝑖𝑖, namely,             .

 A typical choice for the loss function for a continuous-valued 
output is the mean squared error:

 Key ML assumption: Test data shouldn’t have been seen before (at 
the training stage), or there will be overfit.

48



Simplest Example:  Linear Model

49



Simplest Example:  Linear Model

50

intercept

dependent var.
/observation

independent var./predictor

noise: measurement noise, biological variation

random 𝔼𝔼 𝑒𝑒𝑖𝑖 = 0



Linear Model in Matrix-Vector Form

51



Linear Model with Multiple Predictors / Features

 Multiple (Linear) Regression Model: 

52



Linear Regression Example

53

How to estimate model parameters 𝛽𝛽0, 𝛽𝛽1, and 𝛽𝛽2?  Least-Squares!



Linear Regression Example
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How to estimate model parameters 𝛽𝛽0, 𝛽𝛽1, and 𝛽𝛽2?  Least-Squares!



Least-Squares for Parameter Estimation

55



Least-Squares via Vector Calculus

56Vector calculus cheat sheet (p. 521–527):  https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf

Normal Equation (N.E.)

(Error orthogonal to data)

https://www.cs.cmu.edu/%7Eepxing/Class/10701-08s/recitation/mc.pdf


Least-Squares via Partial Differentiation (optional)
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If linear algebra is not used, the derivation can be much more involved:

Normal Equation (N.E.)



Geometric Interpretation of Least-Squares (LS)

 Lemma: The LS procedure finds a vector �𝜷𝜷 in the column (vector) 
space of 𝐗𝐗, i.e., 𝒞𝒞 𝐗𝐗 = 𝐗𝐗𝐗𝐗,𝐛𝐛 ∈ ℝ𝑝𝑝 such that
 �𝐘𝐘 = 𝐗𝐗�𝜷𝜷 is as close as possible to 𝐲𝐲, or

 𝐘𝐘 − �𝐘𝐘 ⊥ 𝒞𝒞 𝐗𝐗 .

58



Properties of Least-Square Estimate

59



Ex:  Linear Model for Learning and Prediction

 Training data (3 data points / a random sample of size 3): 
 Feature/predictor 1: (2, 1, 1).  Feature/predictor 2: (1, 2, 1).  
 Labels: (1, 1, 1).

 Test data (2 data points / a random sample of size 2):
 Feature 1: (1.2, 1.8).  Feature 2: (0.9, 1.3).  
 Labels: (0.9, 0.8).

 Tasks: 
a) Learn a linear model without intercept. 
b) Using drawing to illustrate the data and learned model. 
c) Evaluate the mean squared errors (MSEs) of training and testing.

60



61

Estimated/
trained model 
parameters:

training 
data

a)

Predicted output based on training data:

b)
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Training error
(in MSE): 

c)

Testing error
(in MSE): 

testing 
data

Testing error is 
usually larger than 
training error.



Convolutional Neural Network (CNN)

Learning objectives
o Describe the structure of CNN
o Build and train simple CNNs using a deep learning package
(Ref: Ch 9 of Goodfellow et al. 2016)
Some slides were adapted from Stanford’s CS231n by Fei-Fei Li et al.:  http://cs231n.stanford.edu/

https://www.deeplearningbook.org/
http://cs231n.stanford.edu/


Convolutional Neural Network (CNN)

64LeCun, Bottou, Bengio, Haffner, “Gradient-Based Learning Applied to Document Recognition,” Proc. IEEE,  1998.

& nonlinear 
activation

or pooling & nonlinear 
activation

or pooling

The single most important technology that fueled the rapid 
development of deep learning and big data in the past decade. 



Why is Deep Learning so Successful?
1. Improved model:  convolutional layer,  more layers (“deep”),  simpler 

activation (i.e., ReLU),  skip/residual connection (i.e., ResNet),  attention 
(i.e., Transformer)

2. Big data:  huge dataset,  transfer learning
3. Powerful computation:  graphical processing units (GPUs)

 Example of big data:  ImageNet (22K categories, 15M images)

65Deng, Dong, Socher, Li, Li & Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” IEEE CVPR, 2009.



66(Fei-Fei Li et al., CS231n)



Linear Model to Neural Network

67
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Fully-Connected Layer for 1D Signal



Fully-Connected Layer for RGB Image 

69(Fei-Fei Li et al., CS231n)
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Convolutional Layer for 1D Signal
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Convolutional Layer for 2D Matrix/Image

2D Convolution

Multiple color 
channels need 
multiple filter masks



Convolutional Layer for RGB Image 

72(Fei-Fei Li et al., CS231n)



73(Fei-Fei Li et al., CS231n)



74(Fei-Fei Li et al., CS231n)
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Six 5x5x3 filters

(Fei-Fei Li et al., CS231n)
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Building Block for Modern CNN

(Rectified Linear Unit)

Introduce nonlinearity Reduce spatial dimension



77

CNN is composed of a sequence of convolutional layers, 
interspersed with activation functions (ReLU, in most cases).

(Fei-Fei Li et al., CS231n)



78(Fei-Fei Li et al., CS231n)



79(Fei-Fei Li et al., CS231n)

AlexNet ResNet



 A softmax layer is needed:

 Softmax function: 

 Ex: 

One Last Thing:  When Output is Categorical

80
Winner takes all!



Machine Learning (ML) and Data Science (DS)

 Follow-up machine learning / data science courses:
 ECE 411 Intro to Machine Learning
 ECE 542 Neural Nets and Intro to Deep Learning
 ECE 592-61 Data Science
 ECE 759 Pattern Recognition and Machine Learning
 ECE 763 Computer Vision
 ECE 792-41 Statistical Foundations for Signal Processing & Machine Learning
 Any courses/videos on YouTube, Coursera, etc.

 Data science competitions:  kaggle.com

 Programming languages for ML/DS:  Python,  R,  Matlab
81
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