NC STATE UNIVERSITY

Overview of Modern ML Applications:
Convolutional Neural Network (CNN)

Learning objectives
o Describe the structure of CNN

o Build and train simple CNNs using a deep learning package
(Ref: Ch 9 of Goodfellow et al. 2016)

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS23In by Fei-Fei Li et al.:
http://cs23 I n.stanford.edu/ F24v5


https://www.deeplearningbook.org/
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Convolutional Neural Network (CNN)

The single most important technology that fueled the rapid
development of deep learning and big data in the past decade.
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Why is Deep Learning so Successful?

Improved model: convolutional layer, more layers (“deep”), simpler
activation (i.e., ReLU), skip/residual connection (i.e., ResNet), attention
(i.e., Transformer)

Big data: huge dataset, transfer learning
Powerful computation: graphical processing units (GPUs)

Example of blg data: ImageNet (22K categorles I5M |mages)
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Deng, Dong, Socher, Li, Li & Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” IEEE CVPR, 2009. 3



The Image Classification Challenge:
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Linear Model to Neural Network
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Fully-Connected Layer for ID Signal

() (D7 .

A [e e pr X, |y
2)| _ lw @ @ | |y, .

_Yﬂ[__ N o _3.()
_%@7 ‘ g;ﬁ }3@ T Fg)_ e | . ] ]d_(%)

e~ ——— N~ B

Latges- dence weight lyger inpt, (Xf

Ot Pt pratii el

Y R <l



NC STATE UNIVERSITY

Fully-Connected Layer for RGB Image

32x32x3 image -> stretch to 3072 x 1

input activation
Wax
1 10 x 3072 119
3072 X 10
weights
1 number:

the result of taking a product
between a row of W and the input
(a 3072-dimensional dot product)

(Fei-Fei Li et al., CS231n) 7
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Convolutional Layer for 1D Signal
0
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Convolutional Layer for 2D Matrix/Image
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Convolutional Layer for RGB Image

32x32x3 image

ox5x3 filter
32 L/
I Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”

32

(Fei-Fei Li et al., CS231n) 10
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__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.,e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

™~ 1 number:

(Fei-Fei Li et al., CS231n) 11
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A closer look at spatial dimensions:

activation map

__— 32x32x3 image

5x5x3 filter
=

=0 i
convolve (slide) over all

spatial locations

32 28

(Fei-Fei Li et al., CS231n) 12
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For example, if we had six 5x5 filters, we’ll get six separate activation maps:

activation maps

32

2
Six 5x5x3 filters 8

Convolution Layer

32 28
3 6

We stack these up to get a “new image” of size 28x28x6!

(Fei-Fei Li et al., CS231n) 13
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Building Block for Modern CNN

activation maps
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CNN is composed of a sequence of convolutional layers,
interspersed with activation functions (ReLU, in most cases).

A A A

CONVW, CONVW, CONVW; 7 Y
ReLU o (+) ReLU o(+) RelLU o(:)
2.95- % / e.g. 10
X5X 5x5x6
%2 dites L) 8 fers A
3 6 10

y =-- 'O'(Wg o(Ws U(Wlx))) e

Source of nonlinearity, ReLU: o(z) := max(0, )

(Fei-Fei Li et al., CS231n) 15
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Visualization of VGG-16 by Lane McIntosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

[Zeiler and Fergus 2013]

Linearly
separable
classifier

Low-level Mid-level High-level
features features features

VGG-16 Convi _

(Fei-Fei Li et al., CS231n)



IMAGENET Large Scale Visual Recognition Challenge

Year 2010
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Dense descriptor grid:
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Residual Neural Network (ResNet) (Kaiming He et al., 2015)

¢ Skip connections or shortcuts are added.

¢ They can Layer |

+ avoid “vanishing gradients”, and l

+ make optimization landscape flatter. La)’fy

¢ From Taylor expansion perspective, the neural
network only learns the higher-order error Layer 3
terms beyond the linear term X. 1

¢ Has interpretations in PDE.

& Preferred modern NN structure. y = "'U(Ws [IX+0(W2 oc(Wix))] )

g(x) 5
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When Output is Categorical / Qualitative

—Psb s eros PO ¢ ]

¢ A softmax layer is needed:

¢ Softmax function:
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Other Essential Aspects of CNN

¢ Due to time constraints, this overview lecture covered only the
structural elements of CNNs. Other essential aspects are:

+ Cost function/loss, e.g., MSE, cross entropy.

+ How to train CNNs or estimate the weights (will only give practice
code), i.e., backpropagation (will cover in the next two lectures).
+ Practical training considerations including
* How to determine number of hidden units/channels to be used,
* How to tune learning rate and batch size, and

* When to stop training (humber of epochs).

¢ For a more complete treatment on CNN, refer to the dedicate

courses such as CS23 In CNNs for Visual Recognition or ECE
542/492.

20


https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

NC STATE UNIVERSITY

Machine Learning Curriculum

¢ Follow-up machine learning courses:
» ECE 542/492 Neural Networks » ECE 592-103 Large-Scale ML & Optimization
» ECE 592/792 Adv.Topics ML/DL » ECE 512 Data Science
» ECE 558 Image Processing » ECE 759 Pattern Recognition
» ECE 763 Computer Vision » Any courses/videos on YouTube, Coursera
¢ Top publication venues (theory & application)

+ Machine learning: ICML, NeurlPS, ICLR
+ Computer vision: CVPR, ICCV, ECCV

¢ Data science competitions: kaggle.com

21
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Neural Network Training:
Backpropagation

Acknowledgment: Some graphics and slides were adapted from Profs. Jain (MSU), Min
Wu (UMD), Fei-Fei Li (Stanford)
Some figures are from Duda-Hart-Stork textbook, Fei-Fei Li’s slides
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3-Layer Neural Network Structure

#® A single “bias unit” is connected to each unit in addition to the input units
a d

¢ Net activation: ey = inWji Wy = 2 XiWji = Wy X,
i=1 i=0
where the subscript i indexes units in the input layer, j indexes units in the
hidden layer;

Zy

w;; denotes the input-to-hidden layer weights at hidden unit j.

+ In neurobiology, such weights or connections are
called “synapses”

output k

¢ Each hidden unit emits an output that is
a honlinear function of its activation

. 7.
y; = o (net;)

23
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Training Neural Networks / Estimating Weights

* Notations: t, ~ the kth target (or desired) output,
Z, ~ the kth estimated/computed output with k =1, ..., C.
w;; ~ weight of the network

1% 1
* Squared cost func: J(w) = gz(tk — )" =5 llt—z|”
k=1

Yk Vi
* Learning based on gradient descent by iteratively updating the weights:
w(m+ 1) =w(m) + Aw(m), m=1,2, ...

* The weights are initialized with random values,
and updated in a direction to reduce the error. Aw = —n-Vy J

* Learning rate, 75, controls the step size of the update in weights.

24
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Gradient Descent Topographic map,
color means “height”

W_2

original W

R

negative gradient direction -V, J(w)

Figure source: Stanford CS231n by Fei-Fei Li 26
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Gradient Descent

Example: Gradient at (w{,w,) = (0,1.2)

Jwy,wy) = wi +ws +wyw, + 2.6

d]
a—VVl:2W1+W2=2XO+1.2:1.2

d]
a—VVZZZW2+W1:2X1.2+O=2.4

/ . ](w) Ve

negative gradient direction =[1.2,2.4]"

Figure source: Stanford CS231n by Fei-Fei Li 27
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Efficient Gradient Calculation: Backpropagation
¢ Computes 0] /dwj; for a single input-output pair.
¢ Exploit the chain rule for differentiation, e.g.,

dj d] O0y; Onet
ale’ B 6y] . 6netj . aW]l

¢ Computed by forward and backward sweeps over the network,
keeping track only of quantities local to each unit.

¢ Iterate backward one unit at a time from last layer. Backpropagation
avoids redundant calculations.

28
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Backpropagation (BP): Simple Example

Backpropagation: a simple example

f(z,y,2) = (z+y)z
e.g.x=-2,y=5,z=-4

_ 0 ., 0q
g=z+y S =1, i 1
of of
f=qz % %9 =4
~of of of
Want: oz’ Dy’ Bz
x(m+1) x(m) —4
Descent v+ D) = |yam)| = n | -4
t .
SR lzm+ 1| |zim) 3

Figure source: Stanford CS231n by Fei-Fei Li 29
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Backpropagation (BP): More Complicated Example

1 of
X, W) = =7, 1 =0,1, 2.
f( ) 1+ exp[—(Woxy + wixy + w,)] dw; '
WO - 2
Xo =—1
Wl - _3
X1 = -2

30
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] = It — Z”Z/Z (FFRTLIRPRIES 7 = O'(netk)

Network Learning by BP (cont’d)

+ Error on hidden-to-output weight:

output k

d/ 0] Onety 5,y hidden j
- : — Ok )j net;
dwyj Onety Owy; [ wi !
+ J,, the sensitivity of unit k : 0] input
describes how the overall loss value changes O =—
w/ the activation of the unit’s net activation onet, X, X5
9] 9] 9z,
Op = — = =, = (ty — '(net
k dnety 0z, dnety (tie = 2)0" (nety)
+ Since net,=w, "y, we have anet,
owg;
Wk]
+ Summary |: weight update (or learning rule) for the hidden-to-output
weight is:
_ 9] _ / _
AW = =1 owe; n (t—2z) a'(net) y;= n &Y,

31
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Zy

Network Learning by BP (cont’d)

+ Error on input-to-hidden weight: Lo [0t wyg

. - 9 hidden j
* chain rule: Y _ 6]- 9 _anetf g
aWji ay] 6net- aW]l

. 0z,
ay] ay] [ Z(tk — Z) ] Z(tk - Zk)— X, X,

output k

Z . 0z, Onety Z(t Yo' (et
(& = anetk' dy; B ] e~ 2 )T (neti W
+ Sensitivity of a hidden unit: .
. . . . a] /
(Similarly defined as earlier) = Tnet, = o'(net;) Z:lwkijk

+ Summary 2: Learning rule for the input-to-hidder_l weight is:
AWji = n[a'(netj) Zk ijc‘iklxi = 7]5].Xl

6]- 32
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Sensitivity at Hidden Node

hidden

- OO0

Figure 6.5: The sensitivity at a hidden unit is proportional to the weighted sum of the

C
sensitivities at the output units: §; =g’ (net;) > wg;0k. The output unit sensitivities
k=1
are thus propagated “back” to the hidden units. 33
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BP Algorithm: Training Protocols

I. Gradient descent: Use all training examples to update weights.

2. Stochastic gradient descent (SGD): Use one randomly
selected training example to iteratively update weights.

3. Mini-batch gradient descent: Separate training examples into
disjoint mini-batches. Use mini-batches to update weights. One
“epoch” = cycling through all mini-batches.

¢ Making several complete passes of the
training data helps the network to learn.

¢ Large language models (LLMs) may use
less than 1 epoch due to huge dataset size.

34
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BP Algorithm: Stopping Criteria

¢ Basic idea: Terminating training when the value or the
change of value of the following quantities is below some
preset threshold:

+ Loss function J(w),
+ Gradient norm ||V, J||.

¢ Modern deep learning stopping criteria:
+ Lowest validation error,

+ For large models, training as many iterations as resources is
available.

35
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loss function value |

Learning Curves .

+ Before training starts, the training error o /
IS high; as the learning proceeds, validation _/

training error becomes smaller

Lo te.
"'?»::-z,;?f
+ Error per epoch depends on the
amount of training data and expressive o
power (e.g., # of weights) of the network T

FIGURE 6.6. A learning curve shows the criterion function as a function of the amount

* Average error On an |ndependent Valldatlon/ of training, typically indicated by the number of epochs or presentations of the full train-

ing set. We plot the average error per patiern, thatis, 1/n3__, J,. The validation error
'md the test or generalization error per pattern are virtually always higher than the train-
teSt Set IS always hlgher th an On the tralnlng ing error. In some protocols, training is stopped at the first minimum of the validation
set. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification.

set, and it can decrease or increase Copyright © 2001 by John Wiley & Sons, inc.

+ Avalidation set could be used for model selection. It can avoid overfitting and
can ensure the generalization capability of the learned network: “Select the
model whose error on the validation set is minimum”

+ Atest setis for performance reporting ONLY.
36
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Practical Considerations: Learning Rate
¢ Learning Rate

+ Small learning rate: slow convergence

+ Large learning rate: high oscillation and slow convergence

J
J Tf]<n0pt T="opt J Mopt <n<2nopt J n>2'r}0pt

Figure 6.18: Gradient descent in a one-dimensional quadratic criterion with different
learning rates. If 7 < 7,,¢, convergence is assured, but training can be needlessly
slow. If 17 = nopt, a single learning step suffices to find the error minimum. If
Topt < 11 < 21)opt, the system will oscillate but nevertheless converge, but training is
needlessly slow. If 17 > 2n,,:, the system diverges.
37
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Overview of Modern ML Applications:
Recurrent Neural Network (RNN)
and LSTM

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS23In by Fei-Fei Li et al.:
http://cs23 I n.stanford.edu/
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A Sequence of Identical Neural Network Modules

Force the neural nets (in green) to be the same to lower the complexity!

one to one one to many many to one many to many many to many
Output
! O f s Pt
NN | & | > > - s > R - e
module
f f A tt
Input

Image Captioning Emotion Machine Translation Video

image -> seq of Classification seq of words -> seq of classification

words seq of words words at frame level
-> emotion

39
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Recurrent Neural Network (RNN): Definition

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

}lt :ZZinpf(’lt_;[,ZUt) t=1,2,..

h,: state, X, : input
f,y : neural network

Yt — Why ht

40
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Recurrent Neural Network (RNN): Implementation

h, — he 1. Diagram for f,,.
t fW( t—1; t) Can you label the details?

|

hy = tanh(Wpphe_y + Wypxy)

f,y is implemented via
- linear transforms W, and W,, and
- elementwise nonlinear function tanh(:)

41
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Recurrent Neural Network (RNN): Unrolled

Y, Y, Y3 Yr

T ! ! !
ho—b-fw—hh1—rfw—>h2—rfw—b-h3—r...—th
W/ X X X3

42
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Example: Character-Level Language Model

Vocabulary:
[h, e, |, 0]

Embeddings (one-hot):

Example training
sequence: “hello”.
Supervised pairs:

labels / target chars:

output layer

hidden layer

input layer

input chars:

i“ ”
e

1.0
2.2
-3.0
4.1

HIH

|

0.5
0.3
-1.0
1.2

0.3
-0.1
0.9

1
0
0
0

“h”

\J

I £ 3
0.1 0.2
0.5 -1.5
1.9 -0.1
-1.1 2.2
T T W_hy
0.1 |\w hnl-0-3
05— 0.9
-0.3 0.7
T TW_xh c R3*4
0 0
0 0
1 1
0 0

“I"

=
2
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Vocabulary:
[h, e, |, 0]

At test time, sample
characters one at a
time, feed back to
model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

A

t

.03
A3
.00
.84

t

1.0
2.2
-3.0
4.1

|

0.3
-0.1

)

0.9

1
0
0
0
Mh”

Y

i

“ "

(0] (0]

t $ ¢

25 A1 A1

20 A7 02

.05 .68 .08

50 .03 79

f f f
05 0.1 0.2
0.3 0.5 -1.5
1.0 1.9 0.1

1.2 1.1 2.2
| e
1.0 0.1 |w bnl 03
0.3 = 0.5 » 0.9
0.1 -0.3 0.7

T T T W_xh
0 0 0

1 0 0

0 1 1

0 0 0
“0” “O” MI"

A]' 44
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Long Short-Term Memory (LSTM) Network

4 RNN has the “vanishing gradient” problem!

¢ Resolved by long short-term memory (LSTM) units.

RNN

h; = tanh (W (

hi—1

Tt

)

LSTM
1 o
f _ o 7,74 (ht—l
0 o I
g tanh

45
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An LSTM Unit [Hochreiter et al., 1997]

Ve N\

Ci 1 ; ? B C i
- f
— | ' ’

W—O- Lo wm I -
-»-g_l_' ai'l 0 a W Tt
h
h » stack >0 —» — ’ tan
t-1 \_ y =0 ht/ c=f0Oc-14+10g

hiy = o ® tanh(c¢;)
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Overview of Modern ML Applications:

Transformer (Underlying technology
of BERT & GPT)

Keys

Acknowledgment: Some graphics and slides were adapted from
https://peltarion.com/blog/data-science/self-attention-video
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How to make good sense of language?

¢ Reading comprehension: If you were Google, what result(s) should
you return for “brazil traveler to usa need a visa™?

|. A webpage on U.S. citizens traveling to Brazil

2. A webpage of the U.S. embassy/consulate in Brazil

¢ Contextualization/attention is the key!
+ A nice walk by the river bank.
+ Walk to the bank and get cash.

¢ The transformer paper (Vaswani et al., 2017) showed that only
attention is needed; convolution and recurrence aren’t needed.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in Neural Information Processing Systems (NeurlPS), pp. 6000-10, 2017. [Transformer paper] 48
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Word Embeddings in Natural Language Processing (NLP)

WordPiece

Embedding vectors:

Values are pretrained

best

e e ol B

—0.11
0.01

-0.17

0.13
=0.13

-0.09

6.01
0.07

-0.04

-0.05
=011

-0.25

. sellmg j |

-0.01
-0.03

0.15

©.00
-0.07

.05

mu5|c

@.06
0.11

0.05

0.14
=632

-0.04

Embedding examples: Bag of Words (BoWV), Word2Vec,

| artists |
\ /

-0.02
0.00

-0.05

0.05
i e

0.02
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Word Embeddings are Meaningful Under ‘“‘+’> and “—"’

Numerical operations Semantic match
A

o "
i king + woman ’ — man ] ~ queen [
i-singing: + i’yesterda);, - | today ~ sang
italy paris l rome / france |

te.e; je.e; je.e; je.e;

+ - ~
0.01 -0.04 -8.01 9.01

50
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Contextualization by “Attention”

f y N = P———-
|cef . by J(the | ]\(river\J m _to | the J m l and \ get lcash‘

e.02 9.03 -2.00 -0.04 -9.01 9.01 -90.04 -0.02 -0.06 ©.01
©.02 -90.02 ©.e3 -9.03 -@.04 ©.02 -0.03 0.02 0.04 9.01
Attention
©.29 ©.48 0.51 ©.30 -9.13 / \ ©.39 0.37 9.38 0.60 @.46 2.39
©.19 -0.04 -0.03 ©.08 0.15 .13 9.10 0.37 ©.20 9.34 9.02 0.19 @.24 -0.08

~ ~ ~ ~
i AN —— = - ( —
‘promenade] . waterside /\ f goto ] | cash-machme)
A= N o | S— - ——
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walk by river bank

How does “attention’’ worlk?

Input embeddings

Stage |:
Similarity |
imifari Y Scalar product
measure
— Scaling/
o Softmax
Stage 2: Exponential
. —
saturation &

normalization |
Linear combinatlion

lized embeddings

52

Contextua

Stage 3: Linear {
combination
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Stage |: Similarity Measure via Inner/Dot/Scalar Product

walk by river bank

RER.

53
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Stage 2: Exponential Saturation & Normalization via Softmax

S e
Scalar product
|
0 B —
[}
00— = ]
Scaling/
Softmax
|
0 | O . .
-]
0 O
0 O—— 54
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Stage 3: Contextualization via Linear Combination
| I .

Weights for linear combination

by | river bank

i

e Contextualized embeddings

river/ bank/

Raw embeddings bank river
55
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Stage 3: Contextualization via Linear Combination
| I .

0.07 0.03 0.4 0.5 Weights for linear combination

by | river bank

i

-‘r =i ===
|

| Contextualized embeddings

~iver/ bank/

Raw embeddings ok river
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A Single Head

walk by river bank

Key,Value, and Query

Input embeddings
¢ “Key”,“value”, and “query” are
three projections of an input
embedding to three vector o e
e.g., location
subspaces.

Scalar product

¢ Each subspace represents a Key (e, preposivon
unique semantic aspect.

Scaling/
Softmax

¢ The projection operators /
matrices provide trainable
parameters for transformer
neural networks.

Linear combination

contextualized embeddings
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Multi-Head Attention
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Bidirectional Encoder

Representations from
Transformers (BERT)

La\f@r 1

".
"'.
/7

47
v
e

O‘,A{\\\
W
L YL

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and |. Polosukhin, “Attention is all you need,”
Advances in Neural Information Processing Systems (NeurlPS), pp. 6000-10, 2017. [Transformer paper]

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language
understanding,” North American Chapter of the Association for Computational Linguistics, 2019. [BERT paper] 59
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BERT’s strategies to train a language model

¢ Self-supervised task #|: Masked language model (MLM)

+ Mask 5% of all tokens in each sequence.
+ Predict masked tokens.

¢ Self-supervised task #2: Next sentence prediction (NSP)

+ Generate sentence pairs (X, Y). 50% chance is the actual next
sentence that follows X, and 50% chanceY is a random sentence.

4+ Predict whetherY is the actual next sentence of X.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language
understanding,” North American Chapter of the Association for Computational Linguistics, 2019. 60
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Generative pretrained transformers (GPT) by OpenAl

¢ Training strategy: Next token prediction = Key! Autoregressive
modeling (with finite Markovian order) is close to modeling the joint
distribution of all tokens:

¢ GPI-3 also trained on computer source code.
¢ GPT-3 improved via reinforcement learning from human feedback (RLHF).
¢ ChatGPT fine-tuned with conversational interaction with human users.

¢ Model scale in billion of parameters: GPT-1 (0.1), GPT-2 (1.5), GPT-3
(175), GPT-4 (~10x more); BERT (0.1-0.3).

Radford, Narasimhan, Salimans, and Sutskever, “Improving language understanding by generative pre-training,” OpenAl Tech. Report, 2018. 61
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Text

GPT I’s Structure Prediction

Task
Classifier

_'\T/

Layer Norm

S

Feed

Forward

12x —

A

Layer Norm

S

Masked Multi
Self Attention

A

Text & Position Embed

Channel mixing

Token mixing

Radford, Narasimhan, Salimans, and Sutskever, “Improving language understanding by generative pre-training,” OpenAl Tech. Report, 2018. 62
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Downstream Tasks Using GPT

Classification Start Text Extract ]—> Transformer = Linear
Entailment Start Premise Delim | Hypothesis | Extract }» Transformer > Linear
Start Text 1 Delim Text 2 Extract | — Transformer
Similarity - Linear
Start Text 2 Delim Text 1 Extract | — Transformer
Start Context Delim Answer 1 Extract | | Transformer (> Linear —
Multiple Choice | Start Context Delim | Answer 2 | Extract | > Transformer [~ Linear —;FL
Start Context Delim Answer N Extract | > Transformer > Linear —

Radford, Narasimhan, Salimans, and Sutskever, “Improving language understanding by generative pre-training,” OpenAl Tech. Report, 2018. 63
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Other Large Language Models (LLMs)

¢ Large Language Model Meta Al (Llama). Open source!

+ Llama 2 (July 2023). Sizes: 7, 13,and 70 bn. Llama Chat available.
+ Llama 3.1 (July 2024). Sizes: 8, 70, and 405 bn. Context length / 128K.

Rankx
®
1

2

Model

ol-preview

Q903
ol-mini

Gemini-l.5-Pro-Exp-0827

Grok:2:08:13
GR1-40:2024:-00:13

GPI-40-mini-2024-07-18

Claude. 3..5.5onnet

Gemini:zl.2:Elash-Exp-0827

Grok-2-Mini-08:13

Gemini. Advanced. App
(2024-05:14).

Meta-Llama-3.1-405b-

Tnstruct-fpg

Arena
Score

1355

1335

1324

1299

1294

1285

1273

1269

1269

1267

1267

1266

95% CI

+12/-11

Votes

2991

10213

3009

28229

28909

90695

30434

62977

22264

22041

52218

31280

Organization

OpenAl

OpenAl

OpenAl
Google
XxAT
OpenAl
OpenAl
Anthropic
Google

xAT

Google

Meta

License

Proprietary

Proprietary

Proprietary
Proprietary
Proprietary
Proprietary
Proprietary
Proprietary
Proprietary

Proprietary

Proprietary

Llama 3.1
Community

Knowlecdge

Cutoff

2023/10

2023/10

2023/10
2023/11
2024/3

2023/10
2023/10
2024/4

2023/11

2024/3

Online

2023/12

Community
benchmarking,
e.g., LMSYS
Chatbot Arena

| eaderboard

(as of 9/18/2024)
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Overview of Modern ML Applications:
Diffusion Models

Learning objectives:

o Be able to explain the principle of diffusion models and name
common applications.

o Be able to follow the key derivation steps of diffusion models.

Acknowledgment: This slide deck was adapted from this CVPR 2023 tutorial by Song, Meng, and
Vahdat. [Video recording]

ECE 411 Introduction to Machine Learning, Dr. Chau-WaiWong, NC State University. F23v2


https://cvpr2023-tutorial-diffusion-models.github.io/
https://www.youtube.com/watch?v=1d4r19GEVos

NC STATE UNIVERSITY

Applications for Generative Models

Art & Design Content Generation
LA B A

Playground Demo
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Diffusion Model: Basic Ildea

¢ Goal: Learning to generate by denoising.

¢ Diffusion model contains two processes:
+ Forward diffusion: Gradually adds noise and learns a denoising net.

+ Backward denoising: Reconstruct data via learned denoising net.

Forward: diffusion process (training)

Noise

A

Backward: denoising process (sampling)

67
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Diffusion Model: Algorithmic Perspective

Algorithm 1 Training — o T — ;
1: repeat v :
2: xo ~ q(x0) %, (X0, €) —» v
3: ¢~ Uniform({1,...,7}) __t_(__Q?___). 69 . ¢
4: €~ N(0,1) t —

5: Take gradient descent step on ‘
Vo |le — eo(Varxo + VT —are. )’
6: until converged Forward (training) ‘
Noise
t=1 t=T
Backward (sampling) Algorithm 2 Sampling
I: xr ~N(0,1)
2: fort="1T,...,1do
3 z~N(0,1)ift > 1,elsez=0
4 Xe—1 = \/% (Xt - %eg(xt,t)) + otz
5: end for
DDPM, 5,000 citations as of Dec. 2023: 6: return x

Ho, J., Jain, A., and Abbeel, P, “Denoising diffusion probabilistic models,” NeurlPS, 2020. 68
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Diffusion Model: Implementation Details

¢ Diffusion models often use U-Net with ResNet blocks and self-attention layers.
¢ Time representation: Sinusoidal positional embeddings or random Fourier features.

¢ Time is fed to the residual blocks using (i) simple spatial addition or (ii) adaptive
group normalization layers (Dharivwal & Nichol, 2021).

> €g(x¢,1)

[y e
o S

-
Time Representatlon 1' I

Fully-connected

Dhariwal, P., and Nichol, A, “Diffusion models beat GANs on image synthesis,” NeurlPS, 2021. 69
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Ex: Style Transfer

Source Latent Target

A
Yyvy

\ A 4
Y

A 4

\A
v Y
vy

Yy v

f»‘x(’) J s ODESolve(x(s);vgs),O, ) —— @ —_— ODESOlve(x(l);v((;),l,O) — 5 ,

Su, X., Song, J., Meng, C. and Ermon, S., “Dual diffusion implicit bridges for image to image translation,” ICLR, 2023. 70
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Ex: Semantic Editing with Mask Guidance (DiffEdit)

Input Image Masked Diffusion Input Image Masked Diffusion

Encode Encode

Caption: A bowl of fruits Generate Mask Caption: 4 bowl of fruits
Query: 4 bowl of pears Query: A basket of fruits

Generate Mask

User-provided mask not needed: Model generates a mask based on caption & query.

Couairon, G., Verbeek, J., Schwenk, H., and Cord, M., “DiffEdit: Diffusion-based semantic image editing with mask guidance,” ICLR, 2023. 71
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Ex: Prompt-to-Prompt Image Editing
w/ Cross Attention Control

B P ) PR g e s ) B S : S Rl
“Photo of a cat riding on a’g{tzdej’ “Landscape with a house near a river
Iy 2 Car and o rainbow in the bacxground?

“a cake with.decorations.”
Jelly bedng

“clildren diawing of a castle next to a river.”

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., and Cohen-Or, D, “Prompt to prompt image editing with cross attention control,” ICLR, 2023. 12
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Ex: Personalization with Diffusion Models

Input images

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., and Aberman, K., “DreamBooth: Fine tuning text to image diffusion models for subject driven
generation,” CVPR, 2023. 73



NC STATE UNIVERSITY

Ex: Optimizing Text Embedding (Textual Inversion)

——_

invert

Input samples ——— 5 “S.,” “An oil painting of S.” “App icon of S,.” “Bling itting in “Crochet S”

the same pose as S,”

Input samples 22"t g, gglh‘;;‘ggo abtwo “A S, backpack” “Banksy art of Su” “A S, themed lunchbox”

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., Chechik, G., and Cohen-Or, D., “An image is worth one word: Personalizing text-to-image
generation using textual inversion,” ICLR, 2023. 74
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Mathematical / Probabilistic Formulation

& Raw data model: ¢(Xg), where ( denotes a PDF
# Diffusion model (parameterized by 6): pe(xo) = | po(xo.7) dX1.7

Note xp.7 = X0, ..., XT

])th1|xt
o @ — O %

Xt|xt 1

p(XT) = N(XT; 0, I) Note the pipeline is horizontally flipped.

Xr is Gaussian distributed
w/ mean 0 and covariance |

Ho, J., Jain, A., and Abbeel, P, “Denoising diffusion probabilistic models,” NeurlPS, 2020. 75
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Forward Diffusion: Single Step

Xo X1 X, X3 X4 Xt

e ~ N0 I Wi I i i

X1 = \/a1Xp + VBie e X = yJogXe 1+ VBre; o Xy =\Jarxy_1 + VBrer
Intuition: Image intensity is scaled down and white Gaussian noise is added o, B € (0,1)
to corrupt the image. Variance of the raw image is |. Variances of the noisy ar+ =1

images are maintained to be |.

Alternatively, one-step conditional distribution (I5t-order Markov chain) can be written as:
Y P

Q(Xt | Xt—l) = N(Xt; \/a_txt—laBtI)

76
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Forward Diffusion: Arbitrary Steps

= Vay xg++/(1 —ay) e where € ~N(0,I) ﬁftZHE:ﬂ%‘

Diffused Data Distributions

Validation for X2 : Data Noise
= Varx1 + /e
= Vaz (vVarxo + VBier) + Ve
—\/_\/_X0+( \/_el 5292)
_ \/@_QXO 4 meg CI()zo) ql(xl) ZCI(Xz) | q(x3)4 a(x;)
e

Alternatively, one can write: q(x¢|x0) = N (x¢; v/ agx, (1 — ag)I))

B; € (0,1) ensures that for large T (e.g., T =1000), a7 — 0 and q(x7|xg) = N (x7;0,1))
77
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Backward Denoising

Algorithm 2 Sampling

:xr ~ N(0,1)
cfort=1T,...,1do
z~ N(0,I)ift > 1,elsez =0

|
2
3
4 X1 = U (th't) —|— O+Z  Step-by-step
5
6

reconstruction

d(xo) a(xy) d(x,) d(xs) a(xq) : end for
| S W W S S . return xg
q(xolxy) q(x,1%;) q(x;|x3) q(x3]x,) q(xg.q %)

Sample x7 ~ N (x7;0,1)

S —
o

lteratively sample X;_1 ~ q(X/_1|x¢)

True Denoising Dist.

Can we approximate q(x;_1|x¢)? Yes, we can use a Normal distribution if 3; is small in each forward diffusion step.

. ) 2 Note: |.If random variables are jointly Gaussian,
pg(xtfﬂxt) o N(Xt*LM’ Ot I) then any conditional distribution is also Gaussian.
Use NN as a function approximator 2.x, is not Gaussian, so approximation is needed.

78
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What and How to Train?

¢ Due to the following relation, may use another network to
approximate €o(x¢,t) instead of po(x¢,1) :

po (X¢,t) = \/L—t (Xt — 1/3_1;& €p (Xtﬂf))

& Loss function:

79
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Forward Diffusion: Forming aTraining Data Pair

Algorithm 1 Training

Step I: Draw an image xo from g(-)

Step 2: Pick a time step t é ril:)e?j q(x0)

Step 3: Create a noisy image X; ~ q(x; | Xo) by 3t ~ Uniform({1,...,T})
4
5

fast-forwarding t steps via p e~ N(0.1)
: Take gradient descent step on

Xt = Vo xg+ /(1 —ay) e Vo |le — eo(varxo + VT —ace, 1)

6: until converged

, Data: (Xt (xq, €), t)
x; (X, €) —» Y
PN €o € Label: €

80
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BTW, OpenAl Uses a Slightly Different Loss

............ loss 1o XY ———
v v
v v
X (X0, €) — . Xt (X0, €) — ~
— € — X)
t — t —
DDPM (Ho et al., 2020) DALL-E 2 (Ramesh et al., 2022)

One-step denoising w/ knowledge of step t

Ho, J., Jain, A., and Abbeel, P, “Denoising diffusion probabilistic models,” NeurlPS, 2020.
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M., “Hierarchical text-conditional image generation with CLIP latents,” arXiv:2204.06125, 2022. 81
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Latent/Stable Diffusion

¢ Idea: Use an encoder to map the input data to an embedding space so that denoising
diffusion is done in the latent space.

Latent Space Conditioning)
—I—— Diffusion Process ——— > Eemantiq
Ma
z Denoising U-Net €g 27 Text

Repres
entations

H
=

+ Embeddings are closer to normal distribution => More correct modeling assumption,
simpler denoising, faster synthesis.

B

Pixel Space

pd

denoising step crossattention  switch  skip connection concat

¢ Advantages:

+ Latent space => More expressivity and flexibility in design.
+ Tailored Autoencoders => Application to any data type (graphs, text, 3D data, etc.)

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B., “High-resolution image synthesis with latent diffusion models,” CVPR, 2022. 82
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Conditioning the Diffusion Models

DALL-E 2 IMAGEN
“a propaganda poster depicting a cat dressed as french “A photo of a raccoon wearing an astronaut helmet,
emperor napoleon holding a piece of cheese” looking out of the window at night.”
- e o
K

N i o Y 4
g y 2 N

Imagen

83
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Treating Side Information y as Another Input

2
0= E(xq,y)~a(x0,y) t~ULT]enA (0,1) 1€ = €0 (Xt, 1, ) I3

84
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