
Overview of Modern ML Applications: 

Convolutional Neural Network (CNN)

Learning objectives

o Describe the structure of CNN

o Build and train simple CNNs using a deep learning package

(Ref: Ch 9 of Goodfellow et al. 2016)

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS231n by Fei-Fei Li et al.:  

http://cs231n.stanford.edu/ F24v5

https://www.deeplearningbook.org/


Convolutional Neural Network (CNN)

2LeCun, Bottou, Bengio, Haffner, “Gradient-Based Learning Applied to Document Recognition,” Proc. IEEE,  1998.
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The single most important technology that fueled the rapid 

development of deep learning and big data in the past decade. 



Why is Deep Learning so Successful?

1. Improved model:  convolutional layer,  more layers (“deep”),  simpler 

activation (i.e., ReLU),  skip/residual connection (i.e., ResNet),  attention 

(i.e., Transformer)

2. Big data:  huge dataset,  transfer learning

3. Powerful computation:  graphical processing units (GPUs)

◆ Example of big data:  ImageNet (22K categories, 15M images)

3Deng, Dong, Socher, Li, Li & Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” IEEE CVPR, 2009.



4(Fei-Fei Li et al., CS231n)



Linear Model to Neural Network
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Fully-Connected Layer for 1D Signal



Fully-Connected Layer for RGB Image 

7(Fei-Fei Li et al., CS231n)

activation
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Convolutional Layer for 1D Signal
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Convolutional Layer for 2D Matrix/Image

2D Convolution

Multiple color channels

need multiple filter masks



Convolutional Layer for RGB Image 

10(Fei-Fei Li et al., CS231n)



11(Fei-Fei Li et al., CS231n)



12(Fei-Fei Li et al., CS231n)

activation map
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Six 5x5x3 filters

(Fei-Fei Li et al., CS231n)

For example, if we had six 5x5 filters, we’ll get six separate activation maps:
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Building Block for Modern CNN

(Rectified Linear Unit)

activation maps
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CNN is composed of a sequence of convolutional layers, 

interspersed with activation functions (ReLU, in most cases).

(Fei-Fei Li et al., CS231n)

Source of nonlinearity, ReLU: 



16(Fei-Fei Li et al., CS231n)



17(Fei-Fei Li et al., CS231n)

ResNetAlexNet



Residual Neural Network (ResNet) (Kaiming He et al., 2015)
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◆ Skip connections or shortcuts are added.

◆ They can 

 avoid “vanishing gradients”, and

 make optimization landscape flatter.

◆ From Taylor expansion perspective, the neural 
network only learns the higher-order error 
terms beyond the linear term x.

◆ Has interpretations in PDE.

◆ Preferred modern NN structure.

Layer 1

Layer 2

Layer 3



◆ A softmax layer is needed:

◆ Softmax function: 

◆ Ex: 

When Output is Categorical / Qualitative

19
Winner takes all!

conv/fully connected  → softmax layer



Other Essential Aspects of CNN

◆ Due to time constraints, this overview lecture covered only the 

structural elements of CNNs. Other essential aspects are:

 Cost function/loss, e.g., MSE, cross entropy. 

 How to train CNNs or estimate the weights (will only give practice 

code), i.e., backpropagation (will cover in the next two lectures).

 Practical training considerations including

• How to determine number of hidden units/channels to be used, 

• How to tune learning rate and batch size, and 

• When to stop training (number of epochs).

◆ For a more complete treatment on CNN, refer to the dedicate 

courses such as CS231n CNNs for Visual Recognition or ECE 

542/492.
20

https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv


Machine Learning Curriculum

◆ Follow-up machine learning courses:

➢ ECE 542/492 Neural Networks

➢ ECE 592/792 Adv. Topics ML/DL

➢ ECE 558 Image Processing

➢ ECE 763 Computer Vision

◆ Top publication venues (theory & application)

 Machine learning:  ICML, NeurIPS, ICLR

 Computer vision:  CVPR, ICCV, ECCV

◆ Data science competitions:  kaggle.com

21

➢ ECE 592-103 Large-Scale ML & Optimization

➢ ECE 512 Data Science

➢ ECE 759 Pattern Recognition

➢ Any courses/videos on YouTube, Coursera



Neural Network Training: 

Backpropagation

Acknowledgment: Some graphics and slides were adapted from Profs. Jain (MSU), Min 

Wu (UMD), Fei-Fei Li (Stanford)

Some figures are from Duda-Hart-Stork textbook, Fei-Fei Li’s slides



3-Layer Neural Network Structure

◆ A single “bias unit” is connected to each unit in addition to the input units

◆ Net activation:

where the subscript i indexes units in the input layer, j indexes units in the 
hidden layer; 

wji  denotes the input-to-hidden layer weights at hidden unit j.

 In neurobiology, such weights or connections are 
called “synapses”

◆ Each hidden unit emits an output that is 
a nonlinear function of its activation

yj = σ (netj)

net𝑗 = ෍

𝑖=1

𝑑

𝑥𝑖𝑤𝑗𝑖 + 𝑤𝑗0 = ෍

𝑖=0

𝑑

𝑥𝑖𝑤𝑗𝑖 ≡ 𝐰𝑗
𝑇𝐱,
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Training Neural Networks / Estimating Weights

• Notations:  tk ~ the kth target (or desired) output,

 zk ~ the kth estimated/computed output with k = 1, …, c. 

 wij ~ weight of the network

• Squared cost func:

• Learning based on gradient descent by iteratively updating the weights:

w(m + 1) = w(m) + w(m),     m = 1, 2, …

• The weights are initialized with random values, 

and updated in a direction to reduce the error.

• Learning rate, , controls the step size of the update in weights.

24
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Walking man image is CC0 1.0 public domain Figure source: Stanford CS231n by Fei-Fei Li



Gradient Descent

Figure source: Stanford CS231n by Fei-Fei Li 26

Topographic map, 

color means “height”

−∇𝐰 𝐽 𝐰



Gradient Descent

Figure source: Stanford CS231n by Fei-Fei Li 27

Example: Gradient at 𝑤1, 𝑤2 = 0, 1.2

𝐽 𝑤1, 𝑤2 = 𝑤1
2 + 𝑤2

2 + 𝑤1𝑤2 + 2.6

𝜕𝐽

𝜕𝑤1
= 2𝑤1 + 𝑤2 = 2 × 0 + 1.2 = 1.2

𝜕𝐽

𝜕𝑤2
= 2𝑤2 + 𝑤1 = 2 × 1.2 + 0 = 2.4

Level curves

∇𝐰 𝐽 𝐰
= 1.2, 2.4 𝑇



Efficient Gradient Calculation: Backpropagation

◆ Computes 𝜕𝐽/𝜕𝑤𝑗𝑖 for a single input-output pair.

◆ Exploit the chain rule for differentiation, e.g.,

 

◆ Computed by forward and backward sweeps over the network, 

keeping track only of quantities local to each unit.

◆ Iterate backward one unit at a time from last layer. Backpropagation 

avoids redundant calculations.
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Backpropagation (BP):  Simple Example

Figure source: Stanford CS231n by Fei-Fei Li 29

𝑥 𝑚 + 1
𝑦 𝑚 + 1

𝑧 𝑚 + 1
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step:
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Backpropagation (BP):  More Complicated Example

𝑓 𝐱; 𝐰 =
1

1 + exp − 𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2

𝜕𝑓

𝜕𝑤𝑖
=?, 𝑖 = 0, 1, 2.

𝑤0 = 2

𝑥0 = −1

𝑤1 = −3

𝑥1 = −2

𝑤2 = −3



Network Learning by BP (cont’d)

 Error on hidden-to-output weight:

 

 δk , the sensitivity of unit k :
 describes how the overall loss value changes  

w/ the activation of the unit’s net activation

 Since netk = wk
T y , we have

 Summary 1: weight update (or learning rule) for the hidden-to-output 
weight is:

wkj = −𝜂
𝜕𝐽

𝜕𝑤𝑘𝑗
 =  (tk – zk) 𝜎′(netk) yj =  k yj

                  

k

k
net

J




−
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Network Learning by BP (cont’d)

 Error on input-to-hidden weight: 

• chain rule:

•  

 Sensitivity of a hidden unit: 

(Similarly defined as earlier)

 Summary 2: Learning rule for the input-to-hidden weight is:

Δ𝑤𝑗𝑖 = 𝜂 𝜎′ 𝑛𝑒𝑡𝑗 σ𝑘 𝑤𝑘𝑗𝛿𝑘  

𝛿𝑗

𝑥𝑖 = 𝜂𝛿𝑗𝑥𝑖
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Sensitivity at Hidden Node
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BP Algorithm:  Training Protocols

1. Gradient descent:  Use all training examples to update weights.

2. Stochastic gradient descent (SGD):  Use one randomly 

selected training example to iteratively update weights.

3. Mini-batch gradient descent:  Separate training examples into 

disjoint mini-batches.  Use mini-batches to update weights.  One 

“epoch” = cycling through all mini-batches.

◆ Making several complete passes of the 
training data helps the network to learn.

◆ Large language models (LLMs) may use 
less than 1 epoch due to huge dataset size.

34



BP Algorithm:  Stopping Criteria

◆ Basic idea:  Terminating training when the value or the 

change of value of the following quantities is below some 

preset threshold:

 Loss function J(w),

 Gradient norm ∇𝐰 𝐽 .

◆ Modern deep learning stopping criteria:

 Lowest validation error,

 For large models, training as many iterations as resources is 

available.

35



Learning Curves

 Before training starts, the training error 

is high; as the learning proceeds, 

training error becomes smaller

 Error per epoch depends on the 

amount of training data and expressive 

power (e.g., # of weights) of the network

 Average error on an independent validation/ 

test set is always higher than on the training 

set, and it can decrease or increase

 A validation set could be used for model selection. It can avoid overfitting and 

can ensure the generalization capability of the learned network:  “Select the 

model whose error on the validation set is minimum”

 A test set is for performance reporting ONLY.

36

loss function value 𝐽



Practical Considerations:  Learning Rate
◆ Learning Rate

 Small learning rate:  slow convergence

 Large learning rate:  high oscillation and slow convergence

37



Overview of Modern ML Applications: 

Recurrent Neural Network (RNN)

and LSTM

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS231n by Fei-Fei Li et al.:  

http://cs231n.stanford.edu/



A Sequence of Identical Neural Network Modules

39

Image Captioning 

image -> seq of 

words

Emotion 

Classification 

seq of words 

-> emotion

Machine Translation 

seq of words -> seq of 

words

Video 

classification 

at frame level

Input

NN 

module

Output

Force the neural nets (in green) to be the same to lower the complexity! 



Recurrent Neural Network (RNN):  Definition

40

ht : state, xt : input 

fW : neural network

𝑓𝑊 ⋅,⋅  

𝑡 = 1, 2, …

𝑧−1



Recurrent Neural Network (RNN):  Implementation

41

fW is implemented via 

- linear transforms Whh and Wxh and

- elementwise nonlinear function tanh(∙)

tanh(∙)

Diagram for fW. 

Can you label the details? 

ht−1 ht



Recurrent Neural Network (RNN):  Unrolled

42



Example: Character-Level Language Model

43

Vocabulary: 

[h, e, l, o] 

Embeddings (one-hot):

Example training 

sequence:  “hello”. 

Supervised pairs:

labels /
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Vocabulary: 

[h, e, l, o] 

At test time, sample 

characters one at a 

time, feed back to 

model

“o” “o”

“o” “o”



Long Short-Term Memory (LSTM) Network

◆ RNN has the “vanishing gradient” problem!

◆ Resolved by long short-term memory (LSTM) units.

45

RNN LSTM



An LSTM Unit [Hochreiter et al., 1997]
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Overview of Modern ML Applications: 

Transformer  (Underlying technology 

of BERT & GPT)

Acknowledgment: Some graphics and slides were adapted from

https://peltarion.com/blog/data-science/self-attention-video



How to make good sense of language?

◆ Reading comprehension: If you were Google, what result(s) should 

you return for “brazil traveler to usa need a visa”?

1. A webpage on U.S. citizens traveling to Brazil

2. A webpage of the U.S. embassy/consulate in Brazil

◆ Contextualization/attention is the key!

 A nice walk by the river bank.

Walk to the bank and get cash.

◆ The transformer paper (Vaswani et al., 2017) showed that only 

attention is needed;  convolution and recurrence aren’t needed.

48
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 

Advances in Neural Information Processing Systems (NeurIPS), pp. 6000–10, 2017. [Transformer paper]



Word Embeddings in Natural Language Processing (NLP)

49

Embedding examples: Bag of Words (BoW),  Word2Vec,  …



Word Embeddings are Meaningful Under “+” and “−” 
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Contextualization by “Attention”

51



How does “attention” work?

Stage 1: 

Similarity 

measure

Stage 2: Exponential 

saturation & 

normalization

Stage 3: Linear 

combination 52



Stage 1:  Similarity Measure via Inner/Dot/Scalar Product

53

walk 

by

river

bank



Stage 2:  Exponential Saturation & Normalization via Softmax

54

0

0

0

0



Stage 3:  Contextualization via Linear Combination

55
Raw embeddings

Contextualized embeddings

Weights for linear combination



Stage 3:  Contextualization via Linear Combination

56
Raw embeddings

Contextualized embeddings

Weights for linear combination

0.5

0.4

0.03

0.07

0.5
x

0.4
x

0.03
x

0.07
x



Key, Value, and Query

◆ “Key”, “value”, and “query” are 

three projections of an input 

embedding to three vector

subspaces. 

◆ Each subspace represents a 

unique semantic aspect.

◆ The projection operators / 

matrices provide trainable

parameters for transformer

neural networks.
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(e.g., preposition)

(e.g., location)

A Single Head



Multi-Head Attention
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Bidirectional Encoder 

Representations from 

Transformers (BERT)

59

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 

Advances in Neural Information Processing Systems (NeurIPS), pp. 6000–10, 2017. [Transformer paper]

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language 

understanding,” North American Chapter of the Association for Computational Linguistics, 2019. [BERT paper]



BERT’s strategies to train a language model

◆ Self-supervised task #1:  Masked language model (MLM)

 Mask 15% of all tokens in each sequence.

 Predict masked tokens.

◆ Self-supervised task #2:  Next sentence prediction (NSP)  

 Generate sentence pairs (X,  Y).  50% chance Y is the actual next 

sentence that follows X, and 50% chance Y is a random sentence.

 Predict whether Y is the actual next sentence of X.

60
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language 

understanding,” North American Chapter of the Association for Computational Linguistics, 2019.



Generative pretrained transformers (GPT) by OpenAI

◆ Training strategy:  Next token prediction → Key! Autoregressive 

modeling (with finite Markovian order) is close to modeling the joint 

distribution of all tokens:

◆ GPT-3 also trained on computer source code.

◆ GPT-3 improved via reinforcement learning from human feedback (RLHF).

◆ ChatGPT fine-tuned with conversational interaction with human users.

◆ Model scale in billion of parameters: GPT-1 (0.1), GPT-2 (1.5), GPT-3 

(175), GPT-4 (~10x more);  BERT (0.1–0.3).
61Radford, Narasimhan, Salimans, and Sutskever, “Improving language understanding by generative pre-training,” OpenAI Tech. Report, 2018.



GPT 1’s Structure

62Radford, Narasimhan, Salimans, and Sutskever, “Improving language understanding by generative pre-training,” OpenAI Tech. Report, 2018.

Token mixing

Channel mixing



Downstream Tasks Using GPT

63Radford, Narasimhan, Salimans, and Sutskever, “Improving language understanding by generative pre-training,” OpenAI Tech. Report, 2018.



Other Large Language Models (LLMs)

◆ Large Language Model Meta AI (Llama). Open source!

 Llama 2 (July 2023).  Sizes: 7, 13, and 70 bn. Llama Chat available.

 Llama 3.1 (July 2024). Sizes: 8, 70, and 405 bn. Context length  128K.

◆ a

64

Community 

benchmarking, 

e.g., LMSYS 

Chatbot Arena 

Leaderboard

(as of 9/18/2024)

https://lmarena.ai/?leaderboard
https://lmarena.ai/?leaderboard
https://lmarena.ai/?leaderboard


Overview of Modern ML Applications: 

Diffusion Models

Learning objectives:

o Be able to explain the principle of diffusion models and name 

common applications.

o Be able to follow the key derivation steps of diffusion models.

Acknowledgment:  This slide deck was adapted from this CVPR 2023 tutorial by Song, Meng, and 

Vahdat. [Video recording]

ECE 411 Introduction to Machine Learning,  Dr. Chau-Wai Wong,  NC State University. F23v2

loss

https://cvpr2023-tutorial-diffusion-models.github.io/
https://www.youtube.com/watch?v=1d4r19GEVos
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Applications for Generative Models

Playground Demo

https://playgroundai.com/


Diffusion Model:  Basic Idea

◆ Goal:  Learning to generate by denoising.

◆ Diffusion model contains two processes:

 Forward diffusion:  Gradually adds noise and learns a denoising net. 

 Backward denoising:  Reconstruct data via learned denoising net.

67

Data Noise

Forward: diffusion process (training)

Backward: denoising process (sampling)



68

Diffusion Model:  Algorithmic Perspective

Data x0 Noise

Forward (training)

Backward (sampling)

Ho, J., Jain, A., and Abbeel, P, “Denoising diffusion probabilistic models,” NeurIPS, 2020.

t = 1 t = T

DDPM, 5,000 citations as of Dec. 2023:

loss



Diffusion Model:  Implementation Details

◆ Diffusion models often use U-Net with ResNet blocks and self-attention layers.

◆ Time representation:  Sinusoidal positional embeddings or random Fourier features.

◆ Time is fed to the residual blocks using (i) simple spatial addition or (ii) adaptive 

group normalization layers (Dharivwal & Nichol, 2021).

69Dhariwal, P., and Nichol, A, “Diffusion models beat GANs on image synthesis,” NeurIPS, 2021.



70

Ex:  Style Transfer

Su, X., Song, J., Meng, C. and Ermon, S., “Dual diffusion implicit bridges for image to image translation,” ICLR, 2023.



Ex:  Semantic Editing with Mask Guidance (DiffEdit)

71Couairon, G., Verbeek, J., Schwenk, H., and Cord, M., “DiffEdit: Diffusion-based semantic image editing with mask guidance,” ICLR, 2023.

User-provided mask not needed: Model generates a mask based on caption & query. 
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Ex:  Prompt-to-Prompt Image Editing 

w/ Cross Attention Control

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., and Cohen-Or, D, “Prompt to prompt image editing with cross attention control,” ICLR, 2023.
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Ex:  Personalization with Diffusion Models

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., and Aberman, K., “DreamBooth: Fine tuning text to image diffusion models for subject driven 

generation,” CVPR, 2023.
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Ex:  Optimizing Text Embedding (Textual Inversion)

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., Chechik, G., and Cohen-Or, D., “An image is worth one word: Personalizing text-to-image 

generation using textual inversion,” ICLR, 2023.



Mathematical / Probabilistic Formulation 

◆ Raw data model:          , where q denotes a PDF

◆ Diffusion model (parameterized by θ): 

75Ho, J., Jain, A., and Abbeel, P, “Denoising diffusion probabilistic models,” NeurIPS, 2020.

xT is Gaussian distributed

w/ mean 0 and covariance I

Note the pipeline is horizontally flipped.
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Forward Diffusion:  Single Step

… …

Intuition:  Image intensity is scaled down and white Gaussian noise is added 

to corrupt the image.   Variance of the raw image is 1.   Variances of the noisy 

images are maintained to be 1.  

Alternatively,  one-step conditional distribution (1st-order Markov chain) can be written as:
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Forward Diffusion:  Arbitrary Steps

Alternatively,  one can write: 

ensures that for large T (e.g., T = 1000), 

Validation for      : 
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Backward Denoising

Note:  1. If random variables are jointly Gaussian, 

then any conditional distribution is also Gaussian. 

2. x0 is not Gaussian, so approximation is needed.Use NN as a function approximator

Step-by-step 

reconstruction



What and How to Train? 

◆ Due to the following relation, may use another network to 

approximate               instead of              :

◆ Loss function: 
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Forward Diffusion:  Forming a Training Data Pair

Step 1:  Draw an image       from 

Step 2:  Pick a time step t

Step 3:  Create a noisy image                         by 

            fast-forwarding t steps via 

loss
Data:

 

Label: 
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BTW,  OpenAI Uses a Slightly Different Loss

loss loss

Ho, J., Jain, A., and Abbeel, P, “Denoising diffusion probabilistic models,” NeurIPS, 2020.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M., “Hierarchical text-conditional image generation with CLIP latents,” arXiv:2204.06125, 2022.

DDPM (Ho et al., 2020) DALL-E 2 (Ramesh et al., 2022)

One-step denoising w/ knowledge of step t



Latent/Stable Diffusion

◆ Idea:  Use an encoder to map the input data to an embedding space so that denoising 

diffusion is done in the latent space.

◆ Advantages:

 Embeddings are closer to normal distribution => More correct modeling assumption, 

simpler denoising, faster synthesis.

 Latent space => More expressivity and flexibility in design.

 Tailored Autoencoders =>  Application to any data type (graphs, text, 3D data, etc.) 

82Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B., “High-resolution image synthesis with latent diffusion models,” CVPR, 2022.
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Conditioning the Diffusion Models
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Treating Side Information y as Another Input
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