
Overview of Modern ML Applications:

Convolutional Neural Network (CNN)

Learning objectives

o Describe the structure of CNN

o Build and train simple CNNs using a deep learning package

(Ref: Ch 9 of Goodfellow et al. 2016)

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS231n by Fei-Fei Li et al.:

http://cs231n.stanford.edu/ F24v5

https://www.deeplearningbook.org/

Convolutional Neural Network (CNN)

2LeCun, Bottou, Bengio, Haffner, “Gradient-Based Learning Applied to Document Recognition,” Proc. IEEE, 1998.

& nonlinear

activation

or pooling & nonlinear

activation

or pooling

The single most important technology that fueled the rapid

development of deep learning and big data in the past decade.

Why is Deep Learning so Successful?

1. Improved model: convolutional layer, more layers (“deep”), simpler

activation (i.e., ReLU), skip/residual connection (i.e., ResNet), attention

(i.e., Transformer)

2. Big data: huge dataset, transfer learning

3. Powerful computation: graphical processing units (GPUs)

◆ Example of big data: ImageNet (22K categories, 15M images)

3Deng, Dong, Socher, Li, Li & Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” IEEE CVPR, 2009.

4(Fei-Fei Li et al., CS231n)

Linear Model to Neural Network

5

6

Fully-Connected Layer for 1D Signal

Fully-Connected Layer for RGB Image

7(Fei-Fei Li et al., CS231n)

activation

8

Convolutional Layer for 1D Signal

9

Convolutional Layer for 2D Matrix/Image

2D Convolution

Multiple color channels

need multiple filter masks

Convolutional Layer for RGB Image

10(Fei-Fei Li et al., CS231n)

11(Fei-Fei Li et al., CS231n)

12(Fei-Fei Li et al., CS231n)

activation map

13

Six 5x5x3 filters

(Fei-Fei Li et al., CS231n)

For example, if we had six 5x5 filters, we’ll get six separate activation maps:

14

Building Block for Modern CNN

(Rectified Linear Unit)

activation maps

15

CNN is composed of a sequence of convolutional layers,

interspersed with activation functions (ReLU, in most cases).

(Fei-Fei Li et al., CS231n)

Source of nonlinearity, ReLU:

16(Fei-Fei Li et al., CS231n)

17(Fei-Fei Li et al., CS231n)

ResNetAlexNet

Residual Neural Network (ResNet) (Kaiming He et al., 2015)

18

◆ Skip connections or shortcuts are added.

◆ They can

 avoid “vanishing gradients”, and

 make optimization landscape flatter.

◆ From Taylor expansion perspective, the neural
network only learns the higher-order error
terms beyond the linear term x.

◆ Has interpretations in PDE.

◆ Preferred modern NN structure.

Layer 1

Layer 2

Layer 3

◆ A softmax layer is needed:

◆ Softmax function:

◆ Ex:

When Output is Categorical / Qualitative

19
Winner takes all!

conv/fully connected  → softmax layer

Other Essential Aspects of CNN

◆ Due to time constraints, this overview lecture covered only the

structural elements of CNNs. Other essential aspects are:

 Cost function/loss, e.g., MSE, cross entropy.

 How to train CNNs or estimate the weights (will only give practice

code), i.e., backpropagation (will cover in the next two lectures).

 Practical training considerations including

• How to determine number of hidden units/channels to be used,

• How to tune learning rate and batch size, and

• When to stop training (number of epochs).

◆ For a more complete treatment on CNN, refer to the dedicate

courses such as CS231n CNNs for Visual Recognition or ECE

542/492.
20

https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

Machine Learning Curriculum

◆ Follow-up machine learning courses:

➢ ECE 542/492 Neural Networks

➢ ECE 592/792 Adv. Topics ML/DL

➢ ECE 558 Image Processing

➢ ECE 763 Computer Vision

◆ Top publication venues (theory & application)

 Machine learning: ICML, NeurIPS, ICLR

 Computer vision: CVPR, ICCV, ECCV

◆ Data science competitions: kaggle.com

21

➢ ECE 592-103 Large-Scale ML & Optimization

➢ ECE 512 Data Science

➢ ECE 759 Pattern Recognition

➢ Any courses/videos on YouTube, Coursera

Neural Network Training:

Backpropagation

Acknowledgment: Some graphics and slides were adapted from Profs. Jain (MSU), Min

Wu (UMD), Fei-Fei Li (Stanford)

Some figures are from Duda-Hart-Stork textbook, Fei-Fei Li’s slides

3-Layer Neural Network Structure

◆ A single “bias unit” is connected to each unit in addition to the input units

◆ Net activation:

where the subscript i indexes units in the input layer, j indexes units in the
hidden layer;

wji denotes the input-to-hidden layer weights at hidden unit j.

 In neurobiology, such weights or connections are
called “synapses”

◆ Each hidden unit emits an output that is
a nonlinear function of its activation

yj = σ (netj)

net𝑗 = ෍

𝑖=1

𝑑

𝑥𝑖𝑤𝑗𝑖 + 𝑤𝑗0 = ෍

𝑖=0

𝑑

𝑥𝑖𝑤𝑗𝑖 ≡ 𝐰𝑗
𝑇𝐱,

23

Training Neural Networks / Estimating Weights

• Notations: tk ~ the kth target (or desired) output,

 zk ~ the kth estimated/computed output with k = 1, …, c.

 wij ~ weight of the network

• Squared cost func:

• Learning based on gradient descent by iteratively updating the weights:

w(m + 1) = w(m) + w(m), m = 1, 2, …

• The weights are initialized with random values,

and updated in a direction to reduce the error.

• Learning rate, , controls the step size of the update in weights.

24

𝐽(𝐰) =
1

2
෍

𝑘=1

𝑐

(𝑡𝑘 − 𝑧𝑘)2 =
1

2
𝐭 − 𝐳 2

Δ𝐰 = −𝜂 ⋅ ∇𝐰 𝐽

𝑦𝑘 ො𝑦𝑘

Walking man image is CC0 1.0 public domain Figure source: Stanford CS231n by Fei-Fei Li

Gradient Descent

Figure source: Stanford CS231n by Fei-Fei Li 26

Topographic map,

color means “height”

−∇𝐰 𝐽 𝐰

Gradient Descent

Figure source: Stanford CS231n by Fei-Fei Li 27

Example: Gradient at 𝑤1, 𝑤2 = 0, 1.2

𝐽 𝑤1, 𝑤2 = 𝑤1
2 + 𝑤2

2 + 𝑤1𝑤2 + 2.6

𝜕𝐽

𝜕𝑤1
= 2𝑤1 + 𝑤2 = 2 × 0 + 1.2 = 1.2

𝜕𝐽

𝜕𝑤2
= 2𝑤2 + 𝑤1 = 2 × 1.2 + 0 = 2.4

Level curves

∇𝐰 𝐽 𝐰
= 1.2, 2.4 𝑇

Efficient Gradient Calculation: Backpropagation

◆ Computes 𝜕𝐽/𝜕𝑤𝑗𝑖 for a single input-output pair.

◆ Exploit the chain rule for differentiation, e.g.,

◆ Computed by forward and backward sweeps over the network,

keeping track only of quantities local to each unit.

◆ Iterate backward one unit at a time from last layer. Backpropagation

avoids redundant calculations.

28

𝜕𝐽

𝜕𝑤𝑗𝑖
=

𝜕𝐽

𝜕𝑦𝑗
.

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
.
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖

Backpropagation (BP): Simple Example

Figure source: Stanford CS231n by Fei-Fei Li 29

𝑥 𝑚 + 1
𝑦 𝑚 + 1

𝑧 𝑚 + 1

=

𝑥 𝑚
𝑦 𝑚

𝑧 𝑚

− 𝜂
−4
−4
3

Descent

step:

30

Backpropagation (BP): More Complicated Example

𝑓 𝐱; 𝐰 =
1

1 + exp − 𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2

𝜕𝑓

𝜕𝑤𝑖
=?, 𝑖 = 0, 1, 2.

𝑤0 = 2

𝑥0 = −1

𝑤1 = −3

𝑥1 = −2

𝑤2 = −3

Network Learning by BP (cont’d)

 Error on hidden-to-output weight:

 δk , the sensitivity of unit k :
 describes how the overall loss value changes

w/ the activation of the unit’s net activation

 Since netk = wk
T y , we have

 Summary 1: weight update (or learning rule) for the hidden-to-output
weight is:

wkj = −𝜂
𝜕𝐽

𝜕𝑤𝑘𝑗
 =  (tk – zk) 𝜎′(netk) yj =  k yj

k

k
net

J




−

31

𝜕𝐽

𝜕𝑤𝑘𝑗
=

𝜕𝐽

𝜕𝑛𝑒𝑡𝑘
.
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
= −𝛿𝑘 ⋅ 𝑦𝑗

𝛿𝑘 = −
𝜕𝐽

𝜕𝑛𝑒𝑡𝑘
= −

𝜕𝐽

𝜕𝑧𝑘
.

𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
= 𝑡𝑘 − 𝑧𝑘 𝜎′(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
= 𝑦𝑗

𝐽 = 𝐭 − 𝐳 2/2 𝑡𝑘 ⋯ ⋯ ⋯ = 𝜎(𝑛𝑒𝑡𝑘)

𝑛𝑒𝑡𝑘

𝑛𝑒𝑡𝑗

𝑦𝑗

Network Learning by BP (cont’d)

 Error on input-to-hidden weight:

• chain rule:

•

 Sensitivity of a hidden unit:

(Similarly defined as earlier)

 Summary 2: Learning rule for the input-to-hidden weight is:

Δ𝑤𝑗𝑖 = 𝜂 𝜎′ 𝑛𝑒𝑡𝑗 σ𝑘 𝑤𝑘𝑗𝛿𝑘

𝛿𝑗

𝑥𝑖 = 𝜂𝛿𝑗𝑥𝑖

32

𝜕𝐽

𝜕𝑤𝑗𝑖
=

𝜕𝐽

𝜕𝑦𝑗
.

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
.
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖

𝜕𝐽

𝜕𝑦𝑗
=

𝜕

𝜕𝑦𝑗

1

2
෍

𝑘=1

𝑐

(𝑡𝑘 − 𝑧𝑘)2 = − ෍

𝑘=1

𝑐

(𝑡𝑘 − 𝑧𝑘)
𝜕𝑧𝑘

𝜕𝑦𝑗

= − ෍

𝑘=1

𝑐

(𝑡𝑘 − 𝑧𝑘)
𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
.
𝜕𝑛𝑒𝑡𝑘

𝜕𝑦𝑗
= − ෍

𝑘=1

𝑐

𝑡𝑘 − 𝑧𝑘 𝜎′(𝑛𝑒𝑡𝑘)𝑤𝑘𝑗

𝛿𝑗 ≡
𝜕𝐽

𝜕𝑛𝑒𝑡𝑗
= 𝜎′(𝑛𝑒𝑡𝑗) ෍

𝑘=1

𝑐

𝑤𝑘𝑗𝛿𝑘

Sensitivity at Hidden Node

33

𝜎′

BP Algorithm: Training Protocols

1. Gradient descent: Use all training examples to update weights.

2. Stochastic gradient descent (SGD): Use one randomly

selected training example to iteratively update weights.

3. Mini-batch gradient descent: Separate training examples into

disjoint mini-batches. Use mini-batches to update weights. One

“epoch” = cycling through all mini-batches.

◆ Making several complete passes of the
training data helps the network to learn.

◆ Large language models (LLMs) may use
less than 1 epoch due to huge dataset size.

34

BP Algorithm: Stopping Criteria

◆ Basic idea: Terminating training when the value or the

change of value of the following quantities is below some

preset threshold:

 Loss function J(w),

 Gradient norm ∇𝐰 𝐽 .

◆ Modern deep learning stopping criteria:

 Lowest validation error,

 For large models, training as many iterations as resources is

available.

35

Learning Curves

 Before training starts, the training error

is high; as the learning proceeds,

training error becomes smaller

 Error per epoch depends on the

amount of training data and expressive

power (e.g., # of weights) of the network

 Average error on an independent validation/

test set is always higher than on the training

set, and it can decrease or increase

 A validation set could be used for model selection. It can avoid overfitting and

can ensure the generalization capability of the learned network: “Select the

model whose error on the validation set is minimum”

 A test set is for performance reporting ONLY.

36

loss function value 𝐽

Practical Considerations: Learning Rate
◆ Learning Rate

 Small learning rate: slow convergence

 Large learning rate: high oscillation and slow convergence

37

Overview of Modern ML Applications:

Recurrent Neural Network (RNN)

and LSTM

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS231n by Fei-Fei Li et al.:

http://cs231n.stanford.edu/

A Sequence of Identical Neural Network Modules

39

Image Captioning

image -> seq of

words

Emotion

Classification

seq of words

-> emotion

Machine Translation

seq of words -> seq of

words

Video

classification

at frame level

Input

NN

module

Output

Force the neural nets (in green) to be the same to lower the complexity!

Recurrent Neural Network (RNN): Definition

40

ht : state, xt : input

fW : neural network

𝑓𝑊 ⋅,⋅

𝑡 = 1, 2, …

𝑧−1

Recurrent Neural Network (RNN): Implementation

41

fW is implemented via

- linear transforms Whh and Wxh and

- elementwise nonlinear function tanh(∙)

tanh(∙)

Diagram for fW.

Can you label the details?

ht−1 ht

Recurrent Neural Network (RNN): Unrolled

42

Example: Character-Level Language Model

43

Vocabulary:

[h, e, l, o]

Embeddings (one-hot):

Example training

sequence: “hello”.

Supervised pairs:

labels /

44

Vocabulary:

[h, e, l, o]

At test time, sample

characters one at a

time, feed back to

model

“o” “o”

“o” “o”

Long Short-Term Memory (LSTM) Network

◆ RNN has the “vanishing gradient” problem!

◆ Resolved by long short-term memory (LSTM) units.

45

RNN LSTM

An LSTM Unit [Hochreiter et al., 1997]

46

Overview of Modern ML Applications:

Transformer (Underlying technology

of BERT & GPT)

Acknowledgment: Some graphics and slides were adapted from

https://peltarion.com/blog/data-science/self-attention-video

How to make good sense of language?

◆ Reading comprehension: If you were Google, what result(s) should

you return for “brazil traveler to usa need a visa”?

1. A webpage on U.S. citizens traveling to Brazil

2. A webpage of the U.S. embassy/consulate in Brazil

◆ Contextualization/attention is the key!

 A nice walk by the river bank.

Walk to the bank and get cash.

◆ The transformer paper (Vaswani et al., 2017) showed that only

attention is needed; convolution and recurrence aren’t needed.

48
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”

Advances in Neural Information Processing Systems (NeurIPS), pp. 6000–10, 2017. [Transformer paper]

Word Embeddings in Natural Language Processing (NLP)

49

Embedding examples: Bag of Words (BoW), Word2Vec, …

Word Embeddings are Meaningful Under “+” and “−”

50

Contextualization by “Attention”

51

How does “attention” work?

Stage 1:

Similarity

measure

Stage 2: Exponential

saturation &

normalization

Stage 3: Linear

combination 52

Stage 1: Similarity Measure via Inner/Dot/Scalar Product

53

walk

by

river

bank

Stage 2: Exponential Saturation & Normalization via Softmax

54

0

0

0

0

Stage 3: Contextualization via Linear Combination

55
Raw embeddings

Contextualized embeddings

Weights for linear combination

Stage 3: Contextualization via Linear Combination

56
Raw embeddings

Contextualized embeddings

Weights for linear combination

0.5

0.4

0.03

0.07

0.5
x

0.4
x

0.03
x

0.07
x

Key, Value, and Query

◆ “Key”, “value”, and “query” are

three projections of an input

embedding to three vector

subspaces.

◆ Each subspace represents a

unique semantic aspect.

◆ The projection operators /

matrices provide trainable

parameters for transformer

neural networks.

57

(e.g., preposition)

(e.g., location)

A Single Head

Multi-Head Attention

58

Bidirectional Encoder

Representations from

Transformers (BERT)

59

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”

Advances in Neural Information Processing Systems (NeurIPS), pp. 6000–10, 2017. [Transformer paper]

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language

understanding,” North American Chapter of the Association for Computational Linguistics, 2019. [BERT paper]

BERT’s strategies to train a language model

◆ Self-supervised task #1: Masked language model (MLM)

 Mask 15% of all tokens in each sequence.

 Predict masked tokens.

◆ Self-supervised task #2: Next sentence prediction (NSP)

 Generate sentence pairs (X, Y). 50% chance Y is the actual next

sentence that follows X, and 50% chance Y is a random sentence.

 Predict whether Y is the actual next sentence of X.

60
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language

understanding,” North American Chapter of the Association for Computational Linguistics, 2019.

Generative pretrained transformers (GPT) by OpenAI

◆ Training strategy: Next token prediction → Key! Autoregressive

modeling (with finite Markovian order) is close to modeling the joint

distribution of all tokens:

◆ GPT-3 also trained on computer source code.

◆ GPT-3 improved via reinforcement learning from human feedback (RLHF).

◆ ChatGPT fine-tuned with conversational interaction with human users.

◆ Model scale in billion of parameters: GPT-1 (0.1), GPT-2 (1.5), GPT-3

(175), GPT-4 (~10x more); BERT (0.1–0.3).
61Radford, Narasimhan, Salimans, and Sutskever, “Improving language understanding by generative pre-training,” OpenAI Tech. Report, 2018.

GPT 1’s Structure

62Radford, Narasimhan, Salimans, and Sutskever, “Improving language understanding by generative pre-training,” OpenAI Tech. Report, 2018.

Token mixing

Channel mixing

Downstream Tasks Using GPT

63Radford, Narasimhan, Salimans, and Sutskever, “Improving language understanding by generative pre-training,” OpenAI Tech. Report, 2018.

Other Large Language Models (LLMs)

◆ Large Language Model Meta AI (Llama). Open source!

 Llama 2 (July 2023). Sizes: 7, 13, and 70 bn. Llama Chat available.

 Llama 3.1 (July 2024). Sizes: 8, 70, and 405 bn. Context length 128K.

◆ a

64

Community

benchmarking,

e.g., LMSYS

Chatbot Arena

Leaderboard

(as of 9/18/2024)

https://lmarena.ai/?leaderboard
https://lmarena.ai/?leaderboard
https://lmarena.ai/?leaderboard

Overview of Modern ML Applications:

Diffusion Models

Learning objectives:

o Be able to explain the principle of diffusion models and name

common applications.

o Be able to follow the key derivation steps of diffusion models.

Acknowledgment: This slide deck was adapted from this CVPR 2023 tutorial by Song, Meng, and

Vahdat. [Video recording]

ECE 411 Introduction to Machine Learning, Dr. Chau-Wai Wong, NC State University. F23v2

loss

https://cvpr2023-tutorial-diffusion-models.github.io/
https://www.youtube.com/watch?v=1d4r19GEVos

66

Applications for Generative Models

Playground Demo

https://playgroundai.com/

Diffusion Model: Basic Idea

◆ Goal: Learning to generate by denoising.

◆ Diffusion model contains two processes:

 Forward diffusion: Gradually adds noise and learns a denoising net.

 Backward denoising: Reconstruct data via learned denoising net.

67

Data Noise

Forward: diffusion process (training)

Backward: denoising process (sampling)

68

Diffusion Model: Algorithmic Perspective

Data x0 Noise

Forward (training)

Backward (sampling)

Ho, J., Jain, A., and Abbeel, P, “Denoising diffusion probabilistic models,” NeurIPS, 2020.

t = 1 t = T

DDPM, 5,000 citations as of Dec. 2023:

loss

Diffusion Model: Implementation Details

◆ Diffusion models often use U-Net with ResNet blocks and self-attention layers.

◆ Time representation: Sinusoidal positional embeddings or random Fourier features.

◆ Time is fed to the residual blocks using (i) simple spatial addition or (ii) adaptive

group normalization layers (Dharivwal & Nichol, 2021).

69Dhariwal, P., and Nichol, A, “Diffusion models beat GANs on image synthesis,” NeurIPS, 2021.

70

Ex: Style Transfer

Su, X., Song, J., Meng, C. and Ermon, S., “Dual diffusion implicit bridges for image to image translation,” ICLR, 2023.

Ex: Semantic Editing with Mask Guidance (DiffEdit)

71Couairon, G., Verbeek, J., Schwenk, H., and Cord, M., “DiffEdit: Diffusion-based semantic image editing with mask guidance,” ICLR, 2023.

User-provided mask not needed: Model generates a mask based on caption & query.

72

Ex: Prompt-to-Prompt Image Editing

w/ Cross Attention Control

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., and Cohen-Or, D, “Prompt to prompt image editing with cross attention control,” ICLR, 2023.

73

Ex: Personalization with Diffusion Models

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., and Aberman, K., “DreamBooth: Fine tuning text to image diffusion models for subject driven

generation,” CVPR, 2023.

74

Ex: Optimizing Text Embedding (Textual Inversion)

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., Chechik, G., and Cohen-Or, D., “An image is worth one word: Personalizing text-to-image

generation using textual inversion,” ICLR, 2023.

Mathematical / Probabilistic Formulation

◆ Raw data model: , where q denotes a PDF

◆ Diffusion model (parameterized by θ):

75Ho, J., Jain, A., and Abbeel, P, “Denoising diffusion probabilistic models,” NeurIPS, 2020.

xT is Gaussian distributed

w/ mean 0 and covariance I

Note the pipeline is horizontally flipped.

76

Forward Diffusion: Single Step

… …

Intuition: Image intensity is scaled down and white Gaussian noise is added

to corrupt the image. Variance of the raw image is 1. Variances of the noisy

images are maintained to be 1.

Alternatively, one-step conditional distribution (1st-order Markov chain) can be written as:

77

Forward Diffusion: Arbitrary Steps

Alternatively, one can write:

ensures that for large T (e.g., T = 1000),

Validation for :

78

Backward Denoising

Note: 1. If random variables are jointly Gaussian,

then any conditional distribution is also Gaussian.

2. x0 is not Gaussian, so approximation is needed.Use NN as a function approximator

Step-by-step

reconstruction

What and How to Train?

◆ Due to the following relation, may use another network to

approximate instead of :

◆ Loss function:

79

80

Forward Diffusion: Forming a Training Data Pair

Step 1: Draw an image from

Step 2: Pick a time step t

Step 3: Create a noisy image by

 fast-forwarding t steps via

loss
Data:

Label:

81

BTW, OpenAI Uses a Slightly Different Loss

loss loss

Ho, J., Jain, A., and Abbeel, P, “Denoising diffusion probabilistic models,” NeurIPS, 2020.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M., “Hierarchical text-conditional image generation with CLIP latents,” arXiv:2204.06125, 2022.

DDPM (Ho et al., 2020) DALL-E 2 (Ramesh et al., 2022)

One-step denoising w/ knowledge of step t

Latent/Stable Diffusion

◆ Idea: Use an encoder to map the input data to an embedding space so that denoising

diffusion is done in the latent space.

◆ Advantages:

 Embeddings are closer to normal distribution => More correct modeling assumption,

simpler denoising, faster synthesis.

 Latent space => More expressivity and flexibility in design.

 Tailored Autoencoders => Application to any data type (graphs, text, 3D data, etc.)

82Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B., “High-resolution image synthesis with latent diffusion models,” CVPR, 2022.

83

Conditioning the Diffusion Models

84

Treating Side Information y as Another Input

	Slide 1: Overview of Modern ML Applications: Convolutional Neural Network (CNN)
	Slide 2: Convolutional Neural Network (CNN)
	Slide 3: Why is Deep Learning so Successful?
	Slide 4
	Slide 5: Linear Model to Neural Network
	Slide 6: Fully-Connected Layer for 1D Signal
	Slide 7: Fully-Connected Layer for RGB Image
	Slide 8: Convolutional Layer for 1D Signal
	Slide 9: Convolutional Layer for 2D Matrix/Image
	Slide 10: Convolutional Layer for RGB Image
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Building Block for Modern CNN
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Residual Neural Network (ResNet) (Kaiming He et al., 2015)
	Slide 19: When Output is Categorical / Qualitative
	Slide 20: Other Essential Aspects of CNN
	Slide 21: Machine Learning Curriculum
	Slide 22: Neural Network Training: Backpropagation
	Slide 23: 3-Layer Neural Network Structure
	Slide 24: Training Neural Networks / Estimating Weights
	Slide 25
	Slide 26: Gradient Descent
	Slide 27: Gradient Descent
	Slide 28: Efficient Gradient Calculation: Backpropagation
	Slide 29: Backpropagation (BP): Simple Example
	Slide 30: Backpropagation (BP): More Complicated Example
	Slide 31: Network Learning by BP (cont’d)
	Slide 32: Network Learning by BP (cont’d)
	Slide 33: Sensitivity at Hidden Node
	Slide 34: BP Algorithm: Training Protocols
	Slide 35: BP Algorithm: Stopping Criteria
	Slide 36: Learning Curves
	Slide 37: Practical Considerations: Learning Rate
	Slide 38: Overview of Modern ML Applications: Recurrent Neural Network (RNN) and LSTM
	Slide 39: A Sequence of Identical Neural Network Modules
	Slide 40: Recurrent Neural Network (RNN): Definition
	Slide 41: Recurrent Neural Network (RNN): Implementation
	Slide 42: Recurrent Neural Network (RNN): Unrolled
	Slide 43: Example: Character-Level Language Model
	Slide 44
	Slide 45: Long Short-Term Memory (LSTM) Network
	Slide 46: An LSTM Unit [Hochreiter et al., 1997]
	Slide 47: Overview of Modern ML Applications: Transformer (Underlying technology of BERT & GPT)
	Slide 48: How to make good sense of language?
	Slide 49: Word Embeddings in Natural Language Processing (NLP)
	Slide 50: Word Embeddings are Meaningful Under “+” and “−”
	Slide 51: Contextualization by “Attention”
	Slide 52: How does “attention” work?
	Slide 53: Stage 1: Similarity Measure via Inner/Dot/Scalar Product
	Slide 54: Stage 2: Exponential Saturation & Normalization via Softmax
	Slide 55: Stage 3: Contextualization via Linear Combination
	Slide 56: Stage 3: Contextualization via Linear Combination
	Slide 57: Key, Value, and Query
	Slide 58: Multi-Head Attention
	Slide 59: Bidirectional Encoder Representations from Transformers (BERT)
	Slide 60: BERT’s strategies to train a language model
	Slide 61: Generative pretrained transformers (GPT) by OpenAI
	Slide 62: GPT 1’s Structure
	Slide 63: Downstream Tasks Using GPT
	Slide 64: Other Large Language Models (LLMs)
	Slide 65: Overview of Modern ML Applications: Diffusion Models
	Slide 66: Applications for Generative Models
	Slide 67: Diffusion Model: Basic Idea
	Slide 68: Diffusion Model: Algorithmic Perspective
	Slide 69: Diffusion Model: Implementation Details
	Slide 70: Ex: Style Transfer
	Slide 71: Ex: Semantic Editing with Mask Guidance (DiffEdit)
	Slide 72: Ex: Prompt-to-Prompt Image Editing w/ Cross Attention Control
	Slide 73: Ex: Personalization with Diffusion Models
	Slide 74: Ex: Optimizing Text Embedding (Textual Inversion)
	Slide 75: Mathematical / Probabilistic Formulation
	Slide 76: Forward Diffusion: Single Step
	Slide 77: Forward Diffusion: Arbitrary Steps
	Slide 78: Backward Denoising
	Slide 79: What and How to Train?
	Slide 80: Forward Diffusion: Forming a Training Data Pair
	Slide 81: BTW, OpenAI Uses a Slightly Different Loss
	Slide 82: Latent/Stable Diffusion
	Slide 83: Conditioning the Diffusion Models
	Slide 84: Treating Side Information y as Another Input

