Topics on Machine Learning

ECE 301 Linear Systems

Machine Learning: An Overview

(James, Witten, Hastie, & Tibshirani, 2013)

Final Results

- Unsupervised learning:
 - Learns from a set of unlabeled data to discover patterns, without human supervision.
 - We'll cover principal component analysis (PCA).
- Supervised learning:
 - Learns an input—output mapping based on labeled data.
 - We'll cover linear regression and neural networks.

(Li and Russakovsky, 2013)

Strawberry Bathing cap

Data

Flute

Iteration 1, Step 2a

Machine Learning Topics and Learning Objectives

- Topic I: Linear algebra
 - Explain linear algebra concepts such as linear independence, vector space, and orthogonal basis
 - + Conduct eigendecomposition for symmetric matrices using Matlab
- Topic 2: Principal component analysis (unsupervised learning)
 + Explain the two equivalent goals of PCA
 - + Implement the PCA algorithm and visualize the results
- Topic 3: Linear regression and prediction (supervised learning)
 Interpret regression problem mathematically and geometrically
 Apply linear regression to learning problems without overfit
- Topic 4: Convolutional neural network (CNN)
 - Describe the structure of CNN
 - + Build and train simple CNNs using a deep learning package

Linear Algebra

Learning objectives

 Explain linear algebra concepts such as linear independence, vector space, and orthogonal basis

• Conduct eigendecomposition for symmetric matrices using Matlab (Refer to ECE 220's textbook for a review on vector and matrix. A comprehensive treatment of linear algebra can be found in <u>Scheffe's appendices</u>, available on the library's course reserves.)

Linear Algebra Review: Vector

- Vector: an <u>ordered</u> *n*-tuple.

Row vector: $\mathbf{x} = \begin{bmatrix} x_1, & x_2, & \dots, & x_n \end{bmatrix}$ Column vector: $\mathbf{x} = \begin{bmatrix} x_1, & x_2, & \dots, & x_n \end{bmatrix}^T$ (Assume all vectors are column from now on.)

- Vector properties:

 $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x} \quad \text{(commutative)}$ $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z} \quad \text{(associative)}$ $c [x_1, \dots, x_n] = [cx_1, \dots, cx_n] \quad \text{(scaling)}$

- Norm/length: $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{\frac{1}{2}}$, e.g., $\mathbf{x} = [3, 4]^T$, $\|\mathbf{x}\| = 5$.

Linear Algebra Review: Vector (cont'd)

- Inner product of
$$\mathbf{x}$$
 and \mathbf{y} :

$$\mathbf{x}^{T}\mathbf{y} = [x_{1}, \cdots, x_{n}] \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix} = \sum_{i=1}^{n} x_{i}y_{i} = \mathbf{y}^{T}\mathbf{x}.$$
- $\mathbf{x}^{T}\mathbf{y} = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cos \theta_{\mathbf{x},\mathbf{y}}$

$$Ex: \mathbf{x} = [1,0], \mathbf{y} = [1,1]$$

$$\cos \theta_{\mathbf{x},\mathbf{y}} = \frac{\mathbf{x}^{T}\mathbf{y}}{\|\mathbf{x}\|\|\|\mathbf{y}\|} = \frac{1\cdot 1+0\cdot 1}{\sqrt{1^{2}+0^{2}}\cdot\sqrt{1^{2}+1^{2}}} = \frac{\sqrt{2}}{2}$$

- Def: **x** and **y** are orthogonal if $\mathbf{x}^T \mathbf{y} = 0$.
- Remark: When $\mathbf{x}^T \mathbf{y} = 0$, $\cos^{-1} \left(\frac{0}{\|\mathbf{x}\| \|\mathbf{y}\|} \right) = \frac{\pi}{2} (2k+1)$.

Linear Algebra Review: Matrix

- Matrix:
$$\mathbf{A} = [a_{kl}] = \begin{bmatrix} a_{11} & \cdots & a_{1N} \\ a_{21} & \cdots & a_{2N} \\ \vdots & \ddots & \vdots \\ a_{M1} & \cdots & a_{MN} \end{bmatrix} \in \mathbb{R}^{M \times N}$$
, *M* rows, *N* columns.

- Addition: $\mathbf{A} + \mathbf{B} = [a_{kl} + b_{kl}] = \mathbf{B} + \mathbf{A}$

- Scaling:
$$c\mathbf{A} = [ca_{kl}]$$
 Ex: $2\begin{bmatrix} 0 & 1\\ 2 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$
- Transpose "T": $\mathbf{A}^T = [a_{kl}]^T = [a_{lk}]$ Ex: $\begin{bmatrix} 1 & -1 & 1\\ 2 & 4 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 2\\ -1 & 4\\ 1 & 6 \end{bmatrix}$

- Special matrices: $\mathbf{0}_{M \times N} = [0]_{M \times N}, \ \mathbb{1}_{M \times N} = [1]_{M \times N},$

Identity
matrix
$$\mathbf{I}_M = \begin{bmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{bmatrix} = \operatorname{diag}(\operatorname{ones}(M, 1)).$$

Linear Algebra Review: Matrix (cont'd)

Ex:
$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 3+5 & 4+6 \\ -3+5 & -4+6 \end{bmatrix} = \begin{bmatrix} 8 & 10 \\ 2 & 2 \end{bmatrix}$$

- Def: $\mathbf{A}^{-1} = \mathbf{B}$ if (1) \mathbf{A} is square, and (2) $\mathbf{A}\mathbf{B} = \mathbf{I} = \mathbf{B}\mathbf{A}$.

Linear Algebra Review: Matrix (cont'd)

- For 2-by-2 matrices:
$$\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}^T = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Ex:
$$\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

$$\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b} \Longrightarrow \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

Motivation: Linear Algebra for Discrete Convolution Ex: $x[n] = \{1, 0, 2, 0, 1, 0, -1\}, h[n] = \{-1, 2, -1\}.$ y[n] = x[n] * h[n] = ?h[0] length = 3 x[0]length = 7length = ?

Matrix-vector form:

Linear Independence of a Set of Vectors

• Given
$$\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$$
. Defs:
 $\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0} \Rightarrow \alpha_i = 0, \forall i$ (linearly independent)
 $\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0} \Rightarrow \text{not all } \alpha_i = 0$ (linearly dependent)

 \blacklozenge For "linearly dependent" case (when $\alpha_1 \neq 0$) , we may write:

$$\mathbf{v}_{1} = \beta_{2}\mathbf{v}_{2} + \dots + \beta_{n}\mathbf{v}_{n} \qquad \underline{Why!}$$

$$\bullet \quad \mathsf{Ex:} \quad \mathbf{v}_{1} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^{T}, \ \mathbf{v}_{2} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{T}.$$

$$\alpha_{1} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \alpha_{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \mathbf{0} \qquad \Rightarrow \begin{cases} \alpha_{1} + \alpha_{2} = 0 \\ 2\alpha_{1} + 0 = 0 \\ \alpha_{1} + \alpha_{2} = 0 \end{cases} \Rightarrow \begin{cases} \alpha_{1} = 0 \\ \alpha_{2} = 0 \end{cases} \Rightarrow \text{ linearly independent}$$

Linear Independence of a Set of Vectors (cont'd) • Ex: $\mathbf{v}_1 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$, $\mathbf{v}_4 = \begin{bmatrix} -2 & -4 & -2 \end{bmatrix}^T$. $\mathbf{v}_4 = -2\mathbf{v}_1 \Rightarrow$ linearly dependent • Ex: $\mathbf{v}_1 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$, $\mathbf{v}_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$, $\mathbf{v}_3 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$. $\mathbf{v}_1 = \mathbf{v}_2 + 2\mathbf{v}_3 \Rightarrow$ linearly dependent

Vector Space

• Def: <u>Vector space</u>: A set, *J* of all vectors that are linear combination of $\{\mathbf{v}_i\}_{i=1}^n$, i.e.,

$$V = \Big\{ \mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i, \ \alpha_i \in \mathbb{R} \Big\}.$$

 \mathbf{v}_i 's are said to span the vector space, i.e., $V = \operatorname{span}{\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}}$.

• Ex:
$$V^{(1)} = \left\{ \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \alpha_i \in \mathbb{R} \right\} = \mathbb{R}^2$$
$$V^{(2)} = \left\{ r_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + r_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ r_i \in \mathbb{R} \right\} = \mathbb{R}^2$$

Basis for Vector Space

• Def: A <u>basis</u> for V is a set of linearly independent vectors that span V.

Ex: QI.What is V? Q2.Are vectors linearly independent?

$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$	$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} , \right.$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$
		L ^エ 」ノ

 $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \qquad \qquad \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$

Basis for Vector Space

• Def: A <u>basis</u> for V is a set of linearly independent vectors that span V.

Ex: QI.What is V? Q2.Are vectors linearly independent?

$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} \text{ yes } \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \text{ yes }$$

 $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \quad \text{yes} \qquad \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\} \quad \text{no}$

Dimension of Vector Space

- Def: The <u>dimension</u> of vector space V is the number of vectors in any/a basis for V (or the # of independent vectors in V).
- <u>Column/row rank</u>: The dimension of column/row vector space, respectively.
- Ex: What's the column rank of matrix

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}?$$

It's just another way to ask: what's the dimension of vector space

$$V = \left\{ \mathbf{v} = \alpha_1 \begin{bmatrix} 1\\2\\1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1\\0\\1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \ \alpha_i \in \mathbb{R} \right\}?$$

Dimension of Vector Space (cont'd)

Approach I: By observation, we notice that any (and only) two pairs of vectors spanned V are linearly independent. Hence, we can immediately write out at least three bases:

$$\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\} \quad \text{or} \quad \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \quad \text{or} \quad \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

Hence, the column rank of \mathbf{X} or dimension of vector space V is 2.

• Approach 2: Define the three vectors to be $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, respectively.

$$V = \begin{cases} \mathbf{v} = \alpha_1(\mathbf{v}_2 + 2\mathbf{v}_3) + \alpha_2\mathbf{v}_2 + \alpha_3\mathbf{v}_3 \\ = \{ \mathbf{v} = (\alpha_1 + \alpha_2)\mathbf{v}_2 + (2\alpha_1 + \alpha_3)\mathbf{v}_3 \}. \end{cases}$$

$$\mathbf{v}_2 \perp \mathbf{v}_3 \Rightarrow \text{they are}$$

$$\text{linearly independent.}$$

$$\text{So the dim/rank is 2.}$$

Projection of a Vector on a Unit Vector

Project a vector x on a unit vector u:

- + <u>Projection length</u> is $\mathbf{u}^T \mathbf{x}$. (a number, with sign)
- + <u>Projected vector</u> is $(\mathbf{u}^T \mathbf{x})\mathbf{u}$. (a scaled vector along \mathbf{u})

Proof (projection length):

 $\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$

 $\mathbf{x}^T \left(\frac{\mathbf{y}}{\|\mathbf{y}\|} \right) = \|\mathbf{x}\| \cos \theta = \mathbf{u}^T \mathbf{x}.$

Projection One Vector on Another

- Project a vector x on a vector y:
 - + Projection length is $y^T \mathbf{x} / || y ||$. (a number, with sign)
 - + Projected vector is $(y^T \mathbf{x})y/||y||^2$. (a scaled vector along y)
- Proof (projected vector):

Projection of x onto $\mathbf{y} = (\mathbf{u}^T \mathbf{x}) \mathbf{u}$

Placing \mathbf{u} by $\mathbf{y} / \|\mathbf{y}\|$, we obtain :

Projection One Vector on Another

- Project a vector x on a vector y:
 - + Projection length is $y^T \mathbf{x} / || y ||$. (a number, with sign)
 - + Projected vector is $(y^T \mathbf{x})y/||y||^2$. (a scaled vector along y)
- Proof (projected vector):

Projection of \mathbf{x} onto $\mathbf{y} = (\mathbf{u}^T \mathbf{x}) \mathbf{u}$

Placing \mathbf{u} by $\mathbf{y} / \|\mathbf{y}\|$, we obtain :

$$= \left[\left(\frac{\mathbf{y}}{\|\mathbf{y}\|} \right)^T \mathbf{x} \right] \frac{\mathbf{y}}{\|\mathbf{y}\|} = \left(\mathbf{y}^T \mathbf{x} \right) \mathbf{y} / \left\| \mathbf{y} \right\|^2$$

Projection of a Vector on a Unit Vector

• Example:

$$\mathbf{u}_1 = \begin{bmatrix} \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \end{bmatrix}^T$$
$$\mathbf{x}_1 = \begin{bmatrix} -1, -\frac{1}{2} \end{bmatrix}^T$$
$$\mathbf{x}_2 = \begin{bmatrix} -\frac{1}{2}, 1 \end{bmatrix}^T$$
$$\mathbf{x}_3 = \begin{bmatrix} 2, 1 \end{bmatrix}^T$$

$$z_{11} = \mathbf{x}_1^T \mathbf{u}_1 =$$

$$z_{21} = \mathbf{x}_2^T \mathbf{u}_1 =$$

$$z_{31} = \mathbf{x}_3^T \mathbf{u}_1 =$$

Projection of a Vector on a Unit Vector

• Example:

$$\mathbf{u}_1 = \begin{bmatrix} \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \end{bmatrix}^T$$
$$\mathbf{x}_1 = \begin{bmatrix} -1, -\frac{1}{2} \end{bmatrix}^T$$
$$\mathbf{x}_2 = \begin{bmatrix} -\frac{1}{2}, 1 \end{bmatrix}^T$$
$$\mathbf{x}_3 = \begin{bmatrix} 2, 1 \end{bmatrix}^T$$

$$z_{11} = \mathbf{x}_1^T \mathbf{u}_1 = (-1) \cdot \frac{\sqrt{2}}{2} + (-\frac{1}{2}) \cdot \frac{\sqrt{2}}{2}$$

$$z_{21} = \mathbf{x}_2^T \mathbf{u}_1 = \frac{\sqrt{2}}{4}$$

$$z_{31} = \mathbf{x}_3^T \mathbf{u}_1 = \frac{3}{2}\sqrt{2}$$

Orthonormal Basis

- Def: A basis {a₁, ..., a_r} for V is called <u>orthonormal</u> if r vectors are
 (i) pairwise orthogonal and (ii) have unit norms.
- Ex: Given a vector space

$$V = \left\{ \mathbf{v} = \alpha_1 \begin{bmatrix} 1\\2\\1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1\\0\\1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \ \alpha_i \in \mathbb{R} \right\}$$

$$\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$$

Orthonormal Basis

- Def: A basis {a₁, ..., a_r} for V is called <u>orthonormal</u> if r vectors are
 (i) pairwise orthogonal and (ii) have unit norms.
- Ex: Given a vector space

$$V = \left\{ \mathbf{v} = \alpha_1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \alpha_i \in \mathbb{R} \right\}$$

$\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$	$\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$	$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$	$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$

Basis Not orthogonal Not unit vectors Basis Not orthogonal Not unit vectors Basis w/ orthogonal vectors. Can normalize $[1 \ 0 \ 1]^T$ to obtain an orthonormal basis. Not even a basis. Why???

Orthogonal Matrix (or Orthonormal Matrix)

- Def: A square matrix P is orthogonal if and only if its columns (or rows) constitute an orthonormal basis.
- Properties:

Eigenvector and Eigenvalue

- Def: Let A be an *n*-by-*n* matrix. A nonzero vector v is called an eigenvector of A if Av = λv. Here, λ is called an eigenvalue of A, and v is eigenvector corresponding to eigenvalue λ.
- Prefix "eigen" means "characteristic."
- The characteristic is of A, not of v.
- Physical interpretation: v is invariant to operator A, which means that
 A acts on v can only change its length (and sign) but not orientation.

• Ex: Let
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
Since $\mathbf{A}\mathbf{v} = \begin{bmatrix} 3 \cdot 1 + 0 \cdot 2 \\ 8 \cdot 1 - 1 \cdot 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{v}$,
the eigenvalue $\lambda = 3$.

Eigendecomposition for Symmetric Matrices

- Def: A square matrix A is symmetric if $A = A^T$.
- Thm: A *p*-by-*p* symmetric matrix **R** can be diagonalized by an orthogonal matrix **V** = [**v**₁, ..., **v**_p]. The following statements are equivalent:
- **2.** $\mathbf{RV} = \mathbf{VA} = [\mathbf{v}_1 \cdots \mathbf{v}_p] \begin{vmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{vmatrix}$ 1. $\mathbf{R} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ $= \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_p \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbf{v}_l \end{bmatrix} \begin{bmatrix} -\mathbf{v}_1^T \\ -\mathbf{v}_1^T \\ -\mathbf{v}_l^T \end{bmatrix}$ **3.** $\mathbf{R}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad i = 1, \dots, p.$ $= \begin{bmatrix} \lambda_1 \mathbf{v}_1 \cdots \lambda_p \mathbf{v}_p \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_p^T \end{bmatrix}$ $= \sum_{i=1}^p \lambda_i \mathbf{v}_i \mathbf{v}_i^T$ 27

Eigendecomposition Using Matlab

• Ex: Use Matlab to decompose matrix $\mathbf{R} = \begin{bmatrix} 1 & 4 & 5 \\ 4 & -3 & 0 \\ 5 & 0 & 7 \end{bmatrix}$

Source code:

```
R = [1 4 5; 4 -3 0; 5 0 7];
[V, Lambda] = eig(R); % use built-in function for eigendecomposition
```

```
for j = 1 : size(Lambda, 1)
  if norm(R * V(:, j) - Lambda(j, j) * V(:, j)) < 1e-5 % verify result</pre>
    disp(['Eigenvector-value pair ' int2str(j) ' verified.'])
  end
                                  Can you numerically verify the 3 equivalent
end
                                  expressions on the previous slide?
Output:
V =
                                     Lambda =
    0.5952 0.6072 0.5263
                                        -6.0892
                                                    0
                                                                  0
   -0.7707 0.6167 0.1601
                                              0 0.9383
                                                                  0
   -0.2274 -0.5009
                      0.8351
                                              0
                                                        0
                                                            10.1509
```

Eigendecomposition by Hand (optional)

• Thm: Eigenvalues are roots of the characteristic polynomial det($A - \lambda I$).

• Ex:
$$\mathbf{A} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$

 $0 = \det\left(\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = \det\left(\begin{bmatrix} 5 - \lambda & 4 \\ 1 & 2 - \lambda \end{bmatrix}\right)$
 $= \lambda^2 - 7\lambda + 6 \Rightarrow \lambda_1 = 6, \ \lambda_2 = 1.$
For $\lambda_1 = 6$, $(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{v} = 0 \Leftrightarrow \begin{cases} -v_1 + 4v_2 = 0 \\ v_1 - 4v_2 = 0 \end{cases} \Rightarrow \mathbf{v} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$
For $\lambda_2 = 1$, $(\mathbf{A} - \lambda_2 \mathbf{I}) \mathbf{v} = 0 \Leftrightarrow \begin{cases} 4v_1 + 4v_2 = 0 \\ v_1 + v_2 = 0 \end{cases} \Rightarrow \mathbf{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Nonunique solutions for underdetermined systems

Principal Component Analysis (Unsupervised Learning)

Learning objectives

- Explain the two equivalent goals of PCA
- Implement the PCA algorithm and visualize the results

(Ref: 10.2 of James et al. 2013, 12.2 of Murphy 2012. Extra ref: 12.1 of Bishop 2006.)

Unsupervised Learning

- Def: Learns from a set of unlabeled data to discover interesting patterns.
 - + Visualize the data in an informative way.
 - + Discover subgroups among observations/variables.
- Examples:
 - + Movies grouped by ratings and behavioral data from viewers.
 - + Groups of shoppers characterized by browsing & purchasing histories.
 - + Subgroups of breast cancer patients grouped by gene expressions.
 - + Tweets grouped by latent topics inferred from the use of words.

PCA: Two Equivalent Goals

◆ Goals, i.e., cost/loss/objective functions, of PCA: (1) maximize variance, and (2) minimize error. X2 / Zni 35 72 8 25 Ad Spending 20 15

⁽James, Witten, Hastie, & Tibshirani, 2013)

 γ_{i}

PCA Objective I: Maximizing Variance

 Maximize variance: Project data onto a lower-dimensional subspace while maximizing the variance of the projected data.

Details:

 $\{\mathbf{x}_i\}_{i=1}^n$, $\mathbf{x}_i \in \mathbb{R}^p$ A dataset of n data points $\mathbf{u}_1 : \|\mathbf{u}_1\|^2 = 1$ Unit vector / direction \mathbf{u}_1 (to figure out!) $z_{i1} = \mathbf{u}_1^T \mathbf{x}_i$ Projection of \mathbf{x}_i along \mathbf{u}_1

Naming:

z_{i1}—score, coefficient, transformed coefficient, weight, projected values, ...
 u₁—loading, (1st) principal component vector, ...

NC STATE UNIVERSITY

Spread =
$$\frac{1}{n-1} \sum_{i=1}^{n} (z_{i1} - \overline{z_1})^2$$
 :
where $\overline{z_1} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} z_{i1}$ is the sample mean.

Sample variance measures spread of the projected data along \mathbf{u}_1 .

Matrix form for calculating **R**:

NC STATE UNIVERSITY

Source code:

$$R = (X_c * X_c') / (n-1);$$

Output:

3 2 0 0 1 0 $^{\rm X}_2$ 0 Ο -1 0 0 -2 -3 -3 -2 -1 0 2 3 4 1 х₁

X_c =

-0.9229	1.0864	-1.3466	2.0556	-0.5967	-0.2758
-0.0789	1.1515	-1.6695	1.0773	-1.1415	0.6611

R =

1.70061.25701.25701.4040

Source code:

```
[U, Lambda] = eig(R);
eigenvalues = diag(Lambda);
color_arr = ['r', 'b'];
```

```
for k = 1 : size(U, 2)
    u = U(:, k);
    len = sqrt(eigenvalues(k));
    plot([0 len*u(1)], [0 len*u(2)], 'LineWidth',
    'color', color_arr(k));
end
```


Output:

J =		Lambda =		
0.6644	-0.7474	0.2865	0	
-0.7474	-0.6644	0	2.8181	
PC2	PC1	λ_2	λ_1	
(Optional)

maximize_{**u**} $\mathbf{u}^T \mathbf{R} \mathbf{u}$ subject to $\|\mathbf{u}\| = 1$

Use Lagrange, we have $J(\mathbf{u}) = \mathbf{u}^T \mathbf{R} \mathbf{u} + \lambda (1 - \mathbf{u}^T \mathbf{u})$. Taking the gradient $\nabla_{\mathbf{u}}$ (i.e., a vector of partial derivatives, $[\frac{\partial}{\partial u_1}, \dots, \frac{\partial}{\partial u_p}]^T$) for $J(\mathbf{u})$ and set it to the **0** vector

$$\nabla_{\mathbf{u}} J(\mathbf{u}) = 2\mathbf{R}^T \mathbf{u} + \lambda(-2\mathbf{u}) = \begin{vmatrix} \mathbf{u} \\ \mathbf{u} = \hat{\mathbf{u}} \end{vmatrix},$$

we obtain $\mathbf{R}\hat{\mathbf{u}} = \lambda\hat{\mathbf{u}}$. Left multiply $\hat{\mathbf{u}}^T$ to both sides, we have

$$\hat{\mathbf{u}}^T \mathbf{R} \hat{\mathbf{u}} = \hat{\mathbf{u}}^T \lambda \hat{\mathbf{u}} = \lambda \|\hat{\mathbf{u}}\|^2 = \lambda.$$

The cost function is then simplified to finding the largest λ , or largest eigenvalue of **R**. $\hat{\mathbf{u}}$ is the eigenvector that corresponds to the largest eigenvalue.

Vector calculus cheat sheet (p. 521–527): <u>https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf</u>

PCA: Forward Transform and Reconstruction

i) Analysis/Forward	Transform:
Also known as Karhunen–Loeve Tra	nsform (KLT)
$\begin{bmatrix} z_{i1} \\ z_{i2} \\ \vdots \\ z_{in} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{u}_1^T}{\mathbf{u}_2^T} \\ - \frac{\mathbf{u}_2^T}{\mathbf{u}_2^T} \\ - \frac{\mathbf{u}_2^T}{\mathbf{u}_n^T} \end{bmatrix}$	$\begin{bmatrix} \mathbf{x}_i \end{bmatrix}$
$\mathbf{z}_i = \mathbf{U}^T \mathbf{x}_i$	

ii) Synthesis/Reconstruction:

$$\mathbf{x}_{i} = \mathbf{U}\mathbf{z}_{i} = \begin{bmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{1} \\ \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} z_{i1} \\ \vdots \\ z_{in} \end{bmatrix} = \sum_{k=1}^{n} z_{ik} \mathbf{u}_{k}$$

Synthesis example:

$$\begin{array}{l} 1.09\\ 1.15\\ \hline 1.15\\ \hline \end{array} = \underbrace{ \begin{bmatrix} -0.75 & 0.66\\ -0.66 & -0.75\\ \end{bmatrix} }_{\mathbf{V}} \underbrace{ \begin{bmatrix} -1.58\\ -0.14\\ \end{bmatrix} }_{\mathbf{z}_i} \\ = -1.58 \begin{bmatrix} -0.75\\ -0.66\\ \end{bmatrix} - 0.14 \begin{bmatrix} 0.66\\ -0.75\\ \end{bmatrix} \\ = \begin{bmatrix} 1.19\\ 1.04\\ \end{bmatrix} + \begin{bmatrix} -0.09\\ 0.11\\ \end{bmatrix} \begin{array}{c} \text{Contribution from} \\ \text{PC2 is small} \end{array}$$

Reconstruction Using Dominant PCs

(Murphy 2012)

- Each image of 50x50 is stacked into a column vector of length 2,500.
- Sample covariance matrix will be of size 2,500x2,500.
- Eigenvectors/principal components (PCs) of length 2,500 are <u>reshaped</u> to 50x50 for display. May call them "eigen-images."

PCA Objective 2: Minimizing Error

 Approximate the data points using a presentation in a lowerdimensional subspace.

NC STATE UNIVERSITY

Assume \mathbf{x}_i 's are centered, i.e., $\mathbf{x}_i \leftarrow \mathbf{x}_i - \bar{\mathbf{x}}$, $\forall i$.

$$J(\mathbf{u}_1, z_{i1}) = \frac{1}{n} \sum_{i=1}^n \|\mathbf{x}_i - z_{i1}\mathbf{u}_1\|^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - z_{i1}\mathbf{u}_1)^T (\mathbf{x}_i - z_{i1}\mathbf{u}_1)$$
$$= \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i^T \mathbf{x}_i - 2z_{i1}\mathbf{x}_i^T \mathbf{u}_1 + z_{i1}^2 \mathbf{u}_1^T \mathbf{u}_1)$$

$$\frac{\partial}{\partial z_{j1}}J = \frac{1}{n}(-2\mathbf{x}_j^T\mathbf{u}_1 + 2z_{j1}\underbrace{\mathbf{u}_1^T\mathbf{u}_1}_{=1}) = \begin{vmatrix} \mathbf{u}_1^T\mathbf{u}_1 \\ \mathbf{u}_{j1} = \hat{z}_{j1} \end{vmatrix} = \hat{z}_{j1} = \hat{z}_{j1} = \mathbf{u}_1^T\mathbf{x}_j \quad \text{(Does this result look familiar?)}$$

 $J = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i^T \mathbf{x}_i - 2z_{i1}^2 + z_{i1}^2) \quad \text{(skip the hat of } z_{i1} \text{ for simplicity)}$

 $\min_{\mathbf{u}_1} J = \max_{\mathbf{u}_1} \sum_{i=1}^n z_{i1}^2 = \frac{\text{maximize the spread!}}{\text{Same as the Objective I}}$

(Optional)

PCA's Caveat: Proper Standardization May be Needed

• If coordinates of $\mathbf{x}_j = [x_{1,j}, ..., x_{p,j}]^T$ have different **units**, maximal variance direction may be biased toward $x_{i,j}$ with largest magnitude.

- Why is standardization needed in this case?
- Do the hand-written digit and face recognition need standardization?

When proper standardization of coordinate/variable/feature i is needed:

$$\tilde{x}_{ij} = \frac{x_{ij} - \bar{x}_{i.}}{\sqrt{\frac{1}{n} \sum_{j=1}^{n} (x_{ij} - \bar{x}_{i.})^2}}, \quad i = 1, \dots, p.$$

Should standardize along the feature/horizontal direction rather than within each data point.

PCA: Applications and Beyond

- PCA is lightweight yet powerful. Should be tried before applying more sophisticated tools.
- Modern replacement of PCA:
 - + Data visualization: t-SNE, UMAP.
 - + Dimensionality reduction: Nonlinear dimensionality reduction algorithms.
 - Lossy data compression: Data-independent transforms tailored for data following certain statistical behaviors.
 - Feature extraction: Topic modeling (unsupervised), CNN self-learned feature extraction (supervised).

Linear Regression and Prediction (Supervised Learning)

Learning objectives

- Interpret regression problem mathematically and geometrically
- Apply linear regression to learning problems without overfit (A comprehensive treatment of basic linear regression can be found in <u>Scheffe Ch1</u>, available on the library's course reserves.)

Supervised Learning: Classification

<u>Goal of classification:</u> Assign a categorical/ qualitative label, or a class, to an given input.

← Given an image, it returns the class label.

Optionally, provide a "confidence score."

Supervised Learning: Regression

Goal of regression: Assign a number to each input. Loosely, ML people also call it "label." ← Given a facial image, it returns the 2D

location for each key point of the face.

Supervised Learning: Definition

Terminologies:

- Training data: $\mathcal{D}_{tr} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ Test data: $\mathcal{D}_{te} = \{(\mathbf{x}_i, y_i)\}_{i=n+1}^{n+m}$ Learned model: $y = f(\mathbf{x})$
- **Goal**: Given a set of training data \mathcal{D}_{tr} as the inputs, we would like to compute a learned model $y = f(\mathbf{x})$ such that it can generate accurate predicted outputs

$$\hat{y}_i = f(\mathbf{x}_i), \quad i = n+1, \dots, n+m,$$

from a set of new inputs $\{\mathbf{x}_i\}_{i=n+1}^{n+m}$ of the test data \mathcal{D}_{te} whose labels $\{y_i\}_{i=n+1}^{n+m}$ have never been taken into account when the model is computed.

Quantifying the Accuracy of Prediction

- Quantify the accuracy of the learned model by a loss function (or cost/objective function), based on predicted output, \hat{y}_i , and the true output, y_i , namely, $L(\hat{y}, y)$
- A typical choice for the loss function for a continuous-valued output is the mean squared error:

$$L(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{m} \sum_{i=n+1}^{n+m} (\hat{y}_i - y_i)^2$$

Key ML assumption: Test data shouldn't have been seen before (at the training stage), or there will be overfit.

Simplest Example: Linear Model

<u>Data</u>: $(x_i, Y_i), \quad i = 1, ..., n$

<u>Model</u>: $Y_i = \beta_0 + \beta_1 x_i + e_i$

Simplest Example: Linear Model

 $\boldsymbol{\theta} = [\beta_0, \beta_1]^T$ is the parameter vector/weights. $\mathbb{E}[Y_i] = \beta_0 + \beta_1 x_i = \frac{\text{linear combination of unknowns } \beta_0 \text{ and } \beta_1}{\text{with known coefficient 1 and } x_i.}$

Linear Model in Matrix-Vector Form

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}_{n \times 2}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1}, \quad \mathbf{e} = \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}_{n \times 1}$$

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ "Matrix-vector form" data matrix $Y_i = \beta_0 + \beta_1 x_i + e_i,$ $i = 1, \dots, n.$

Linear Model with Multiple Predictors / Features

Multiple (Linear) Regression Model:

$$Y_{i} = \sum_{j=1}^{p} x_{ij}\beta_{j} + e_{i}, \quad i = 1, \dots, n.$$

$$\mathbf{Y}_{n \times 1} = \mathbf{X}_{n \times p}\beta_{p \times 1} + \mathbf{e}_{n \times 1}$$

t vector of random elements

Linear Regression Example

 $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i, \quad i = 1, \dots, 50.$

How to estimate model parameters β_0 , β_1 , and β_2 ? Least-Squares!

Linear Regression Example

 $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i, \quad i = 1, \dots, 50.$

 $\begin{array}{c} Y_i: \text{ grade} \\ x_{i1}: \text{ time spent on HW} \\ x_{i2}: \text{ time spent on review} \end{array} \begin{bmatrix} Y_1 \\ \vdots \\ Y_{50} \end{bmatrix} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} \\ \vdots & \vdots & \vdots \\ 1 & x_{50,1} & x_{50,2} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ e_{50} \end{bmatrix}$

How to estimate model parameters β_0, β_1 , and β_2 ? Least-Squares!

Least-Squares for Parameter Estimation

Problem Setup: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, where $\mathbf{X} \triangleq [\boldsymbol{\xi}_1, \cdots, \boldsymbol{\xi}_p]$.

Estimate β such that $J(\beta) = \|\mathbf{Y} - \mathbf{X}\beta\|^2$ is minimized. or $J(\beta) = \sum_{i=1}^n (Y_i - \sum_{j=1}^p x_{ij}\beta_j)^2$

This is called the *least-squares* procedure.

Least-Squares via Vector Calculus

Recall:
$$J(\boldsymbol{\beta}) = \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

$$\nabla_{\boldsymbol{\beta}} J(\boldsymbol{\beta}) = 2 \left[-\mathbf{X}^T (\mathbf{Y} - \mathbf{X} \boldsymbol{\beta}) \right] = \begin{vmatrix} \mathbf{0} \\ \mathbf{\beta} = \hat{\boldsymbol{\beta}} \end{vmatrix}$$

$$\mathbf{X}^T \mathbf{Y} = \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}}$$

Method 1: $\nabla_{\boldsymbol{\beta}} J(\boldsymbol{\beta}) = \begin{vmatrix} 0 \\ \boldsymbol{\beta} = \hat{\boldsymbol{\beta}} \end{vmatrix}$

$$\mathbf{X}^T(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{eta}}) = \mathbf{0}$$

(Error orthogonal to data)

Normal Equation (N.E.)

Vector calculus cheat sheet (p. 521–527): <u>https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf</u>

Least-Squares via Partial Differentiation (optional)

If linear algebra is not used, the derivation can be much more involved:

Method 2:

$$\frac{\partial J}{\partial \beta_{k}} = \sum_{i=1}^{n} 2(Y_{i} - \sum_{j=1}^{p} x_{ij}\beta_{j}) \underbrace{\frac{\partial}{\partial \beta_{k}} \left(-\left(\dots + x_{ik}\beta_{k} + \dots\right) \right)}_{-x_{ik}} \\
= |_{\beta_{j} = \hat{\beta}_{j}} 0, \quad k = 1, \dots, p$$

$$\iff \sum_{i} Y_{i}x_{ik} = \sum_{i} \sum_{j} x_{ij}\hat{\beta}_{j}x_{ik} \iff \begin{bmatrix} \mathbf{X}^{T}\mathbf{Y} = \mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\beta}} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{Y} \end{bmatrix} \\
\text{where } \mathbf{X}^{T}\mathbf{Y} = \begin{bmatrix} \sum_{i=1}^{n} x_{ik}Y_{i} \end{bmatrix}_{p \times 1}, \quad \mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} \sum_{i=1}^{n} x_{ij}x_{ik} \end{bmatrix}_{p \times p} \\
\mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}} = \begin{bmatrix} \sum_{j=1}^{p} \left(\sum_{i=1}^{n} x_{ij}x_{ik} \right) \hat{\beta}_{j} \end{bmatrix}_{p \times 1}$$

57

Geometric Interpretation of Least-Squares (LS)

• Lemma: The LS procedure finds a vector $\widehat{\beta}$ such that

+ $\widehat{Y} = X\widehat{\beta}$ is as close as possible to y, or

+
$$(\mathbf{Y} - \widehat{\mathbf{Y}}) \perp \mathcal{C}(\mathbf{X}).$$

• Note $C(\mathbf{X}) = {\mathbf{Xb}, \mathbf{b} \in \mathbb{R}^p}$

$$(\mathbf{Y} - \hat{\mathbf{Y}}) \perp \mathcal{C}(\mathbf{X})$$

$$\iff (\mathbf{Y} - \hat{\mathbf{Y}}) \perp \mathbf{X}\mathbf{b}, \quad \forall \mathbf{b} \in \mathbb{R}^{p}$$

$$\iff \boldsymbol{\xi}_{j}^{T}(\mathbf{Y} - \hat{\mathbf{Y}}) = 0, \quad j = 1, \cdots, p$$

$$\iff [\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{p}]^{T}(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \mathbf{0}$$

$$\iff \mathbf{X}^{T}\mathbf{Y} = \mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}}$$

Properties of Least-Square Estimate

If rank(
$$\mathbf{X}$$
) $\triangleq r = p$ (1) $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$ is unique solution.

 $\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}] = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} \boldsymbol{\beta}) = \boldsymbol{\beta} \text{ (unbiased)}$

(2)
$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \underbrace{\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T}_{\mathbf{H}:\text{``hat'' matrix, or ``orthogonal projector.''}}_{\mathbf{H}=\mathbf{H}.$$
 Why?

Ex: Linear Model for Learning and Prediction

Training data (3 data points / a random sample of size 3):
 Feature/predictor 1: (2, 1, 1). Feature/predictor 2: (1, 2, 1).

✦ Labels: (I, I, I).

Test data (2 data points / a random sample of size 2):
 Feature I: (1.2, 1.8). Feature 2: (0.9, 1.3).
 Labels: (0.9, 0.8).

Tasks:

- a) Learn a linear model without intercept.
- b) Using drawing to illustrate the data and learned model.
- c) Evaluate the mean squared errors (MSEs) of training and testing.

NC STATE UNIVERSITY

a)
$$\mathbf{X} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$
 $\mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ $(\mathbf{X}, \mathbf{Y}) : \begin{array}{c} \text{training} \\ \text{data} \end{array}$

Estimated/ trained model parameters:

Predicted output based on training data:

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \begin{bmatrix} 2 & 1\\ 1 & 2\\ 1 & 1 \end{bmatrix} \frac{4}{11} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 12\\ 12\\ 8 \end{bmatrix} \neq \mathbf{Y}, \text{ or } \begin{bmatrix} \mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T = \frac{1}{11} \begin{bmatrix} 2 & 1\\ 1 & 2\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 6 & -5\\ -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1\\ 1 & 2 & 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 10 & -1 & 3\\ -1 & 10 & 3\\ 3 & 3 & 2 \end{bmatrix} \hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y} = \frac{1}{11} \begin{bmatrix} 12\\ 12\\ 8 \end{bmatrix}$$

$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y} = \frac{1}{11} \begin{bmatrix} 12\\ 12\\ 8 \end{bmatrix}$$

$$61$$

NC STATE UNIVERSITY

c) Training error (in MSE):

$$\frac{1}{3} \sum_{i=1}^{3} \left(y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}} \right)^2 = \frac{1}{3} \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2 = \frac{1}{3} \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2$$
$$= \frac{1}{3} \cdot \frac{1}{11^2} \left\| \begin{bmatrix} 12 - 11\\12 - 11\\8 - 11 \end{bmatrix} \right\|^2 = \frac{1}{3} \cdot \frac{1}{11^2} (1 + 1 + 9) = \frac{1}{3} \cdot \frac{1}{11} = 0.03$$

Testing error (in MSE):

or
$$\mathbf{X}_{\text{test}} = \begin{bmatrix} 1.2 & 0.9 \\ 1.8 & 0.3 \end{bmatrix} \mathbf{Y}_{\text{test}} = \begin{bmatrix} 0.9 \\ 0.8 \end{bmatrix} (\mathbf{X}_{\text{test}}, \mathbf{Y}_{\text{test}}) : \frac{\text{testing}}{\text{data}}$$

$$\frac{1}{2} \sum_{i=4}^{5} \left(y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}} \right)^2 = \frac{1}{2} \| \mathbf{Y}_{\text{test}} - \hat{\mathbf{Y}}_{\text{test}} \|^2 = \frac{1}{2} \| \mathbf{Y}_{\text{test}} - \mathbf{X}_{\text{test}} \hat{\boldsymbol{\beta}} \|^2$$
$$= \frac{1}{2} \| \begin{bmatrix} 0.9 \\ 0.8 \end{bmatrix} - \begin{bmatrix} 1.2 & 0.9 \\ 1.8 & 0.3 \end{bmatrix} \left(\frac{4}{11} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) \|^2 = \frac{1}{2} \| \begin{bmatrix} 0.14 \\ 0.04 \end{bmatrix} \|^2 = 0.01$$

Testing error is usually larger than training error.

Convolutional Neural Network (CNN)

Learning objectives

- Describe the structure of CNN
- Build and train simple CNNs using a deep learning package (Ref: Ch 9 of <u>Goodfellow et al. 2016</u>)

Some slides were adapted from Stanford's CS231n by Fei-Fei Li et al.: <u>http://cs231n.stanford.edu/</u>

Convolutional Neural Network (CNN)

The **single** most important technology that fueled the rapid development of **deep learning** and **big data** in the past decade.

LeCun, Bottou, Bengio, Haffner, "Gradient-Based Learning Applied to Document Recognition," Proc. IEEE, 1998.

Why is Deep Learning so Successful?

- I. Improved model: convolutional layer, more layers ("deep"), simpler activation (i.e., ReLU), skip/residual connection (i.e., ResNet), attention (i.e., Transformer)
- 2. Big data: huge dataset, transfer learning
- **3. Powerful computation:** graphical processing units (GPUs)
- Example of big data: ImageNet (22K categories, I5M images)

Deng, Dong, Socher, Li, Li & Fei-Fei, "ImageNet: A Large-Scale Hierarchical Image Database," *IEEE CVPR*, 2009. 65

IM GENET Large Scale Visual Recognition Challenge

The Image Classification Challenge: 1,000 object classes 1,431,167 images

Linear Model to Neural Network

y⁽⁾⁾

y(2)

Fully-Connected Layer for ID Signal

Fully-Connected Layer for RGB Image

32x32x3 image -> stretch to 3072 x 1

NC STATE UNIVERSITY

Convolutional Layer for ID Signal

70

Convolutional Layer for 2D Matrix/Image

Convolutional Layer for RGB Image

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

A closer look at spatial dimensions:

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Building Block for Modern CNN

NC STATE UNIVERSITY

CNN is composed of a sequence of convolutional layers, interspersed with activation functions (ReLU, in most cases).

IM GENET Large Scale Visual Recognition Challenge

79

One Last Thing: When Output is Categorical

- ◆ A **softmax layer** is needed:
- Softmax function:

$$\sigma_i(z) = \frac{e^{\beta z_i}}{\sum_{j=1}^{k} e^{\beta z_j}}$$

$$Q \xrightarrow{\beta_{11}} 0 \rightarrow exp(\cdot) \rightarrow P[Y=1|\chi]$$

$$B_{12}$$

$$B$$

Ex:

$$K = 2 \quad \overline{v_{1}} = \frac{e^{\beta z_{1}}}{e^{\beta z_{1}} + e^{\beta z_{2}}}$$

$$= \frac{1}{1 + e^{\beta (z_{2} - z_{1})}}$$

When
$$\beta$$
 very large,
 $Z_2 > Z_1$ leads to $\begin{cases} \sigma_1 = 0 \\ \sigma_2 = 1 \end{cases}$

Winner takes all!

Machine Learning (ML) and Data Science (DS)

- Follow-up machine learning / data science courses:
 - + ECE 411 Intro to Machine Learning
 - ECE 542 Neural Nets and Intro to Deep Learning
 - ECE 592-61 Data Science
 - ECE 759 Pattern Recognition and Machine Learning
 - ECE 763 Computer Vision
 - > ECE 792-41 Statistical Foundations for Signal Processing & Machine Learning
 - + Any courses/videos on YouTube, Coursera, etc.
- Data science competitions: kaggle.com
- Programming languages for ML/DS: Python, R, Matlab