
Topics on Machine Learning

ECE 301 Linear Systems



Machine Learning:  An Overview

◆ Unsupervised learning:

 Learns from a set of unlabeled

data to discover patterns, 

without human supervision.

We’ll cover principal 

component analysis (PCA).

◆ Supervised learning:

 Learns an input–output mapping based on 

labeled data.

We’ll cover linear 

regression and neural

networks.
2(Li and Russakovsky, 2013)

(James, Witten, Hastie, & Tibshirani, 2013)



Machine Learning Topics and Learning Objectives

◆ Topic 1: Linear algebra

 Explain linear algebra concepts such as linear independence, vector space, 
and orthogonal basis

 Conduct eigendecomposition for symmetric matrices using Matlab

◆ Topic 2: Principal component analysis (unsupervised learning)

 Explain the two equivalent goals of PCA

 Implement the PCA algorithm and visualize the results

◆ Topic 3: Linear regression and prediction (supervised learning)

 Interpret regression problem mathematically and geometrically

 Apply linear regression to learning problems without overfit

◆ Topic 4: Convolutional neural network (CNN)

 Describe the structure of CNN

 Build and train simple CNNs using a deep learning package 3



Linear Algebra

Learning objectives

o Explain linear algebra concepts such as linear independence, vector space, 

and orthogonal basis

o Conduct eigendecomposition for symmetric matrices using Matlab

(Refer to ECE 220’s textbook for a review on vector and matrix.  A comprehensive treatment of 

linear algebra can be found in Scheffe’s appendices, available on the library’s course reserves.)

https://www.dropbox.com/s/0budechw7dj2y4y/ScheffeHenry_AppendicesIandII.pdf?dl=0


Linear Algebra Review:  Vector
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Todo

Complex 

notation



Linear Algebra Review:  Vector (cont’d)
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Linear Algebra Review:  Matrix
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Identity 

matrix



Linear Algebra Review:  Matrix (cont’d)
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column 𝑙

row 𝑘

𝐀(𝑘, : ) 𝐁(: , 𝑙)

-



Linear Algebra Review:  Matrix (cont’d)
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Motivation:  Linear Algebra for Discrete Convolution 
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Ex: 

length = 7 length = 3 length = ?

Matrix-vector form:



◆ Given                       . Defs:

◆ For “linearly dependent” case (when             ) , we may write:

◆ Ex: 

(linearly dependent)

(linearly independent)

Linear Independence of a Set of  Vectors

11

Why? 



Linear Independence of a Set of  Vectors (cont’d)

◆ Ex:

◆ Ex: 
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Vector Space

◆ Def:  Vector space:  A set, , of all vectors that are linear 

combination of              , i.e., 

’s are said to span the vector space, i.e., 

◆ Ex: 
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Basis for  Vector Space

◆ Def:  A basis for V is a set of linearly independent vectors that span V.

◆ Ex:  Q1. What is V ?  Q2. Are vectors linearly independent?

14



Basis for  Vector Space
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yes yes

yes no

◆ Def:  A basis for V is a set of linearly independent vectors that span V.

◆ Ex:  Q1. What is V ?  Q2. Are vectors linearly independent?



Dimension of  Vector Space

◆ Def:  The dimension of vector space V is the number of vectors in 

any/a basis for V (or the # of independent vectors in V).

◆ Column/row rank:  The dimension of column/row vector space, 

respectively.

◆ Ex:  What’s the column rank of matrix

It’s just another way to ask: what’s the dimension of vector space

16



Dimension of  Vector Space (cont’d)

◆ Approach 1:  By observation, we notice that any (and only) two 

pairs of vectors spanned V are linearly independent. Hence, we can 

immediately write out at least three bases: 

Hence, the column rank of X or dimension of vector space V is 2.

◆ Approach 2:  Define the three vectors to be               , respectively.

17

or or

they are 

linearly independent. 

So the dim/rank is 2.



Projection of a Vector on a Unit Vector

◆ Project a vector 𝐱 on a unit vector 𝐮:

 Projection length is 𝐮𝑇𝐱. (a number, with sign)

 Projected vector is 𝐮𝑇𝐱 𝐮. (a scaled vector along 𝐮)

◆ Proof (projection length): 

18



Projection One Vector on Another

◆ Project a vector 𝐱 on a vector 𝐲:

 Projection length is 𝒚𝑇𝐱/ 𝒚 . (a number, with sign)

 Projected vector is 𝒚𝑇𝐱 𝒚/ 𝒚 𝟐. (a scaled vector along 𝐲)

◆ Proof (projected vector): 
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Projection One Vector on Another

◆ Project a vector 𝐱 on a vector 𝐲:

 Projection length is 𝒚𝑇𝐱/ 𝒚 . (a number, with sign)

 Projected vector is 𝒚𝑇𝐱 𝒚/ 𝒚 𝟐. (a scaled vector along 𝐲)

◆ Proof (projected vector): 

20



Projection of a Vector on a Unit Vector

◆ Example:

21



Projection of a Vector on a Unit Vector

◆ Example:

22



Orthonormal Basis

◆ Def:  A basis {a1, … , ar} for V is called orthonormal if r vectors are 

(i) pairwise orthogonal and (ii) have unit norms.

◆ Ex: Given a vector space 

23



Orthonormal Basis

◆ Def:  A basis {a1, … , ar} for V is called orthonormal if r vectors are 

(i) pairwise orthogonal and (ii) have unit norms.

◆ Ex: Given a vector space 

24

Basis

Not orthogonal

Not unit vectors

Basis

Not orthogonal

Not unit vectors

Basis w/ orthogonal vectors. 

Can normalize [1 0 1]T to 

obtain an orthonormal basis.

Not even a basis.

Why???



Orthogonal Matrix (or Orthonormal Matrix)

◆ Def:  A square matrix P is orthogonal if and only if its columns (or 

rows) constitute an orthonormal basis.

◆ Properties:

 PTP = PPT = I

 P−1 = PT

◆ Ex: 

25

(Block trick)

(Direct evaluation)



Eigenvector and Eigenvalue

◆ Def:  Let A be an n-by-n matrix.  A nonzero vector v is called an 

eigenvector of A if Av = λv. Here, λ is called an eigenvalue of A, and v

is eigenvector corresponding to eigenvalue λ.

◆ Prefix “eigen” means “characteristic.” 

◆ The characteristic is of A, not of v.

◆ Physical interpretation: v is invariant to operator A, which means that 

A acts on v can only change its length (and sign) but not orientation.

◆ Ex: 

26



Eigendecomposition for Symmetric Matrices

◆ Def:  A square matrix A is symmetric if A = AT.

◆ Thm:  A p-by-p symmetric matrix R can be diagonalized by an 

orthogonal matrix V = [v1, … , vp]. The following statements are 

equivalent:

27

1. 2.

3.



Eigendecomposition Using Matlab

◆ Ex: Use Matlab to decompose matrix 

◆ Source code: 

◆ Output:

28

R = [1 4 5; 4 -3 0; 5 0 7];
[V, Lambda] = eig(R);  % use built-in function for eigendecomposition 
 
for j = 1 : size(Lambda, 1)
  if norm(R * V(:, j) - Lambda(j, j) * V(:, j)) < 1e-5  % verify result
    disp(['Eigenvector-value pair ' int2str(j) ' verified.'])
  end
end

Lambda =
   -6.0892         0         0
         0    0.9383         0
         0         0   10.1509

V =
    0.5952    0.6072    0.5263
   -0.7707    0.6167    0.1601
   -0.2274   -0.5009    0.8351

Can you numerically verify the 3 equivalent 

expressions on the previous slide? 



Eigendecomposition by Hand (optional)

◆ Thm:  Eigenvalues are roots of the characteristic polynomial det(A− λI).

◆ Ex: 

29

Nonunique solutions 

for underdetermined 

systems



Principal Component Analysis 

(Unsupervised Learning)

Learning objectives

o Explain the two equivalent goals of PCA

o Implement the PCA algorithm and visualize the results

(Ref: 10.2 of James et al. 2013, 12.2 of Murphy 2012. Extra ref: 12.1 of Bishop 2006.)

https://www.statlearning.com/
https://ebookcentral.proquest.com/lib/ncsu/reader.action?docID=3339490


Unsupervised Learning

◆ Def:  Learns from a set of unlabeled data to discover interesting 

patterns.

 Visualize the data in an informative way.

 Discover subgroups among observations/variables.

◆ Examples: 

 Movies grouped by ratings and behavioral data from viewers.

 Groups of shoppers characterized by browsing & purchasing histories.

 Subgroups of breast cancer patients grouped by gene expressions.

 Tweets grouped by latent topics inferred from the use of words.

31



PCA:  Two Equivalent Goals

◆ Goals, i.e., cost/loss/objective functions, of PCA: 

(1) maximize variance, and (2) minimize error.

32(James, Witten, Hastie, & Tibshirani, 2013)



PCA Objective 1:  Maximizing Variance

◆ Maximize variance:  Project data onto a lower-dimensional subspace

while maximizing the variance of the projected data.

◆ Details: 

◆ Naming: 

 𝑧𝑖1—score, coefficient, transformed coefficient, weight, projected values, …

 𝐮1—loading, (1st) principal component vector, …
33

Unit vector / direction 𝐮1 (to figure out!)

Projection of 𝐱𝑖 along 𝐮1 

A dataset of n data points



where                            is the sample mean.
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(Assuming all 𝐱𝑖 are already “centered,”

i.e., 𝐱𝑖 ← 𝐱𝑖 − ത𝐱, ∀𝑖.)

(n−1)RXc

Xc
T

Sample variance measures spread 

of the projected data along 𝐮1. 
:

Matrix form for calculating R: 
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X_c =
   -0.9229    1.0864   -1.3466    2.0556   -0.5967   -0.2758
   -0.0789    1.1515   -1.6695    1.0773   -1.1415    0.6611

R =
    1.7006    1.2570
    1.2570    1.4040

plot(X_c(1, :), X_c(2, :), 'ko’);

xlabel('x_1'); ylabel('x_2');
axis([-3 3 -3 3]); axis equal;

hold on;

R = (X_c * X_c') / (n-1);

Source code:

Output:
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[U, Lambda] = eig(R);
eigenvalues = diag(Lambda);
color_arr = ['r', 'b'];

for k = 1 : size(U, 2)
  u = U(:, k);
  len = sqrt(eigenvalues(k));
  plot([0 len*u(1)], [0 len*u(2)], 'LineWidth', 2, 
'color', color_arr(k));
end

U =
    0.6644   -0.7474
   -0.7474   -0.6644

Lambda =
    0.2865         0
         0    2.8181

Source code:

Output:

PC1
PC2

PC1PC2 λ1λ2



37Vector calculus cheat sheet (p. 521–527):  https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf

(Optional)

https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf
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PCA:  Forward Transform and Reconstruction

Contribution from 

PC2 is small

Analysis example:

Synthesis example:

Also known as Karhunen–Loeve Transform (KLT)

i) Analysis/Forward Transform: 

ii) Synthesis/Reconstruction: 



Reconstruction Using Dominant PCs

39

• Each image of 50x50 is stacked into a column vector of length 2,500.

• Sample covariance matrix will be of size 2,500x2,500.

• Eigenvectors/principal components (PCs) of length 2,500 are reshaped to 

50x50 for display. May call them “eigen-images.”

PC1 of MNISTRaw image

PC2 PC3

Recon w/ 2 PCs Recon w/ 10 PCs

Recon w/ 100 PCs Recon w/ 506 PCs

(Murphy 2012)



PCA Objective 2:  Minimizing Error

◆ Approximate the data points using a presentation in a lower-

dimensional subspace. 

40(James, Witten, Hastie, & Tibshirani, 2013)
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Same as the Objective 1

(Optional)

(Does this result look 

familiar?)



PCA’s Caveat:  Proper Standardization May be Needed

◆ If coordinates of 𝐱𝑗 = 𝑥1,𝑗 , … , 𝑥𝑝,𝑗
𝑇

have different units, maximal 

variance direction may be biased toward 𝑥𝑖,𝑗 with largest magnitude. 

◆ When proper standardization of coordinate/variable/feature i is needed:

42

Should standardize along the 

feature/horizontal direction 

rather than within each data point.

• Why is standardization needed in 

this case?

• Do the hand-written digit and face 

recognition need standardization?

(Bishop 2006)

p

n1



PCA:  Applications and Beyond

◆ PCA is lightweight yet powerful.  Should be tried before applying more 

sophisticated tools.

◆ Modern replacement of PCA: 

 Data visualization:  t-SNE, UMAP.

 Dimensionality reduction:  Nonlinear dimensionality reduction algorithms.

 Lossy data compression:  Data-independent transforms tailored for data 

following certain statistical behaviors.

 Feature extraction:  Topic modeling (unsupervised),  CNN self-learned 

feature extraction (supervised).

43



Linear Regression and Prediction 

(Supervised Learning)

Learning objectives

o Interpret regression problem mathematically and geometrically

o Apply linear regression to learning problems without overfit

(A comprehensive treatment of basic linear regression can be found in Scheffe Ch1, available 

on the library’s course reserves.)

https://www.dropbox.com/s/tourfs269cm8xon/scheffe_ch1.pdf?dl=0


Supervised Learning:  Classification

45Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.

Goal of classification: 

Assign a categorical/ 

qualitative label, or a 

class, to an given input.

 Given an image, it 

returns the class label.

Optionally, provide a 

“confidence score.”



Supervised Learning:  Regression

46

Goal of regression: 

Assign a number to 

each input. 

Loosely, ML people also 

call it “label.”

 Given a facial image, 

it returns the 2D 

location for each key 

point of the face.

Yi Sun, Xiaogang Wang, Xiaoou Tang, Deep Convolutional Network Cascade for Facial Point Detection, CVPR, 2013.



Supervised Learning:  Definition

◆ Terminologies:

 Training data:     

 Test data:          

 Learned model:

◆ Goal:  Given a set of training data      as the inputs, we would like 

to compute a learned model               such that it can generate 

accurate predicted outputs

from a set of new inputs                of the test data       whose 

labels                have never been taken into account when the 

model is computed. 47



Quantifying the Accuracy of Prediction

◆ Quantify the accuracy of the learned model by a loss function (or 

cost/objective function), based on predicted output, ො𝑦𝑖, and the true 

output, 𝑦𝑖, namely,             .

◆ A typical choice for the loss function for a continuous-valued 

output is the mean squared error:

◆ Key ML assumption: Test data shouldn’t have been seen before (at 

the training stage), or there will be overfit.

48



Simplest Example:  Linear Model

49



Simplest Example:  Linear Model

50

intercept

dependent var.

/observation

independent var./predictor

noise: measurement noise, biological variation

random 𝔼 𝑒𝑖 = 0



Linear Model in Matrix-Vector Form

51



Linear Model with Multiple Predictors / Features

◆ Multiple (Linear) Regression Model: 

52



Linear Regression Example

53

How to estimate model parameters 𝛽0, 𝛽1, and 𝛽2?  Least-Squares!



Linear Regression Example

54

How to estimate model parameters 𝛽0, 𝛽1, and 𝛽2?  Least-Squares!



Least-Squares for Parameter Estimation

55



Least-Squares via Vector Calculus

56Vector calculus cheat sheet (p. 521–527):  https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf

Normal Equation (N.E.)

(Error orthogonal to data)

https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf


Least-Squares via Partial Differentiation (optional)

57

If linear algebra is not used, the derivation can be much more involved:

Normal Equation (N.E.)



Geometric Interpretation of Least-Squares (LS)

◆ Lemma: The LS procedure finds a vector 𝜷 such that

 𝐘 = 𝐗𝜷 is as close as possible to 𝐲, or

 𝐘 − 𝐘 ⊥ 𝒞 𝐗 .

◆ Note 𝒞 𝐗 = 𝐗𝐛, 𝐛 ∈ ℝ𝑝

58



Properties of Least-Square Estimate

59



Ex:  Linear Model for Learning and Prediction

◆ Training data (3 data points / a random sample of size 3): 

 Feature/predictor 1: (2, 1, 1).  Feature/predictor 2: (1, 2, 1).  

 Labels: (1, 1, 1).

◆ Test data (2 data points / a random sample of size 2):

 Feature 1: (1.2, 1.8).  Feature 2: (0.9, 1.3).  

 Labels: (0.9, 0.8).

◆ Tasks: 

a) Learn a linear model without intercept. 

b) Using drawing to illustrate the data and learned model. 

c) Evaluate the mean squared errors (MSEs) of training and testing.

60



61

Estimated/

trained model 

parameters:

training 

data
a)

Predicted output based on training data:

b)
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Training error

(in MSE): 
c)

Testing error

(in MSE): 

testing 

data

Testing error is 

usually larger than 

training error.



Convolutional Neural Network (CNN)

Learning objectives

o Describe the structure of CNN

o Build and train simple CNNs using a deep learning package

(Ref: Ch 9 of Goodfellow et al. 2016)

Some slides were adapted from Stanford’s CS231n by Fei-Fei Li et al.:  http://cs231n.stanford.edu/

https://www.deeplearningbook.org/
http://cs231n.stanford.edu/


Convolutional Neural Network (CNN)

64LeCun, Bottou, Bengio, Haffner, “Gradient-Based Learning Applied to Document Recognition,” Proc. IEEE,  1998.

& nonlinear 

activation

or pooling & nonlinear 

activation

or pooling

The single most important technology that fueled the rapid 

development of deep learning and big data in the past decade. 



Why is Deep Learning so Successful?

1. Improved model:  convolutional layer,  more layers (“deep”),  simpler 

activation (i.e., ReLU),  skip/residual connection (i.e., ResNet),  attention 

(i.e., Transformer)

2. Big data:  huge dataset,  transfer learning

3. Powerful computation:  graphical processing units (GPUs)

◆ Example of big data:  ImageNet (22K categories, 15M images)

65Deng, Dong, Socher, Li, Li & Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” IEEE CVPR, 2009.



66(Fei-Fei Li et al., CS231n)



Linear Model to Neural Network

67
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Fully-Connected Layer for 1D Signal



Fully-Connected Layer for RGB Image 

69(Fei-Fei Li et al., CS231n)
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Convolutional Layer for 1D Signal
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Convolutional Layer for 2D Matrix/Image

2D Convolution

Multiple color 

channels need 

multiple filter masks



Convolutional Layer for RGB Image 

72(Fei-Fei Li et al., CS231n)



73(Fei-Fei Li et al., CS231n)



74(Fei-Fei Li et al., CS231n)
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Six 5x5x3 filters

(Fei-Fei Li et al., CS231n)
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Building Block for Modern CNN

(Rectified Linear Unit)

Introduce nonlinearity Reduce spatial dimension
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CNN is composed of a sequence of convolutional layers, 

interspersed with activation functions (ReLU, in most cases).

(Fei-Fei Li et al., CS231n)



78(Fei-Fei Li et al., CS231n)



79(Fei-Fei Li et al., CS231n)

AlexNet ResNet



◆ A softmax layer is needed:

◆ Softmax function: 

◆ Ex: 

One Last Thing:  When Output is Categorical

80
Winner takes all!



Machine Learning (ML) and Data Science (DS)

◆ Follow-up machine learning / data science courses:

 ECE 411 Intro to Machine Learning

➢ ECE 542 Neural Nets and Intro to Deep Learning

➢ ECE 592-61 Data Science

➢ ECE 759 Pattern Recognition and Machine Learning

➢ ECE 763 Computer Vision

➢ ECE 792-41 Statistical Foundations for Signal Processing & Machine Learning

 Any courses/videos on YouTube, Coursera, etc.

◆ Data science competitions:  kaggle.com

◆ Programming languages for ML/DS:  Python,  R,  Matlab

81
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