ECE 411 Homework 5 (Fall 2024) Instructor: Dr. Chau-Wai Wong Material Covered: Statistical Learning Basics

Problem 1 (20 points) [Conditional Expectation, Variance Operator]

a) Given the joint PMF for random variables X and Y in the table, compute the following

quantities and tabulate your results: $p_X(x)$, $p_Y(y)$, $p_{X|Y}(x|y)$, $p_{Y|X}(y|x)$, $\mathbb{E}[X]$, $\mathbb{E}[Y]$, $\mathbb{E}[X|Y = y]$, $\mathbb{E}[Y|X = x]$. (Intermediate steps for calculating expectations must be shown to receive full points.) Explain the difference between $\mathbb{E}[X|Y = y]$ and $\mathbb{E}[X|Y]$.

b) Prove the following formulas:

$$\operatorname{Var}(aX+b) = a^2 \operatorname{Var}(X), \tag{1a}$$

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2 \operatorname{Cov}(X,Y), \tag{1b}$$

$$\operatorname{Var}(X - Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$$
, when X and Y are uncorrelated. (1c)

$$\operatorname{Var}\left(\sum_{i} a_{i} X_{i}\right) = \sum_{i} a_{i}^{2} \operatorname{Var}(X_{i}), X_{i} \text{'s uncorrelated.}$$
(1d)

You may find the following equations useful: i) the shortcut formulas for variance, $\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}X)^2$; and ii) the covariance, $\operatorname{Cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$. Answer the following questions:

- Why does b not appear on the right-hand side of (1a)?
- How does the variance of sum of two random variables compare to the sum of the variance of individual variables when the variables are negatively/anti-correlated? Can you give an extreme example?
- Why is it a plus sign rather than a minus sign on the right-hand side of (1c)?

Problem 2 (20 points) [Optimality of Mean Operators]

a) We are given two variables X and Y that are not independent. Hence, we may use one to estimate the other. Find the best deterministic function $g(\cdot)$ such that it minimizes the expected squared error between Y and g(X) conditioned on X = x. You may find a change of variable using θ in the place of g(x) helpful. Pay attention to write clearly the upper case X and the lower case x in your submission.

b) Arithmetic average, or the sample mean in a statistical context, is commonly used in everyday life for making quantitative description. We examine a statistical interpretation for the arithmetic average below. A person weighs μ lb. He tried multiple scales in a supermarket and recorded the reading from each scale, denoted by Y_i for the *i*th scale. We may create a linear model as follows to relate the true weight μ and the measurement Y_i :

$$Y_i = \mu + e_i, \quad i = 1, \dots, N,$$

where e_i is the measurement error of the *i*th scale. Use the mean-square criterion $J(\mu) = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \mu)^2$ to find the closed-form expression for the best estimator for μ . The expression should contain $\{Y_i\}_{i=1}^{N}$ only, and should not contain such symbols as μ or e_i as they were not available when readings were recorded. Does the expression make intuitive sense?

Problem 3 (20 points) [Alternative Neighbor Averaging Method for Simulated Data]

- a) Given a regression function $f(x) = x^2 + 2x + 1$ and a linear model Y = f(X) + e, where $e \sim \mathcal{N}(0, 1)$ and $X \sim \text{Uniform}(-1, 1)$, generate 50 pairs of (x_i, y_i) and graph them using black circles. Also, plot the regression function using a black solid curve.
- b) We use a method similar to the nearest neighbor averaging to estimate the regression function. We use a neighborhood of fixed radius $\delta = 0.1$. The estimated regression function takes the following form:

$$\hat{f}(x) = \frac{1}{|I(x)|} \sum_{i \in I(x)} y_i, \quad I(x) = \{i : |x - x_i| \le \delta\},\tag{2}$$

where I(x) is the set of indices of x_i such that they are within δ in terms of distance from x, and |I(x)| is the number of elements of set I(x). For example, when x = 0.9and $\delta = 0.1$, you first need to find all points that are within the range of [0.8, 1.0] in the x-direction, and then take the average of their values in the y-direction to obtain $\hat{f}(0.9)$. You may want to calculate $\hat{f}(\cdot)$ for all $x \in [-0.9, 0.9]$ with a step size of 0.01. If there is not a single point within the current neighborhood, use the \hat{f} from the previous step as that for the current step. Draw the estimated regression function using a red solid curve in the same plot of a).

- c) (Bonus, 5 points) Vary the neighborhood radius δ , how does the shape of the estimated regression function change?
- **Problem 4** (20 points) [Curse of Dimensionality] Read the first paragraph of Ex. 2.4 in the Exercises (last) section of Chapter 2 of *The Elements of Statistical Learning* (12th Printing, 2017). Note that we may also write $\mathbf{X} = [X_1, X_2, \ldots, X_p]^T$, where $X_k \sim \mathcal{N}(0, 1)$ for $k = 1, \ldots, p$. Use a programming language of your choice. To get started, set p = 10. Note that in this problem, all vectors are column vectors.
 - a) Write a computer program to randomly draw/generate N = 100 vectors from the template random vector **X**, namely, $\{\mathbf{x}^{(i)}, i = 1, ..., N\}$. Note that each vector should

contain p normally distributed random numbers. Plot all vectors as points in a 3-D space consisting of the first, second, the last coordinates.

- **b)** Calculate the coordinate value of each point after being projected onto a fixed direction specified by $\mathbf{a} = \mathbf{x}_0 / \|\mathbf{x}_0\|$, namely, $z^{(i)} = \mathbf{a}^T \mathbf{x}^{(i)}$. Here, \mathbf{x}_0 is an arbitrary nonzero vector of length p, "T" is the transpose operation, and $z^{(i)} \in \mathbb{R}$. What are the sample mean and sample variance of the projected coordinates $\{z^{(i)}, i = 1, \ldots, N\}$?
- c) Repeat a) and b) for $p \in \{1, 2, ..., 80\}$. You may want to use a for loop to achieve this. Optionally, put your code for parts a) and b) into a function to make your code easier to read. Plot the sample variance of the projected coordinates as a function of p.
- d) Calculate the squared distance of each point to the origin, namely, $d_i^2 = \|\mathbf{x}^{(i)}\|^2$. What is the sample mean of $\{d_i^2, i = 1, ..., N\}$? Plot the sample mean of the squared distance as a function of p in the same plot of c). Limit the range of y-axis between 0 and 80. For p = 5, inspect the values of any five d_i^2 's. Do the results in b) and c) match with the conclusion drawn in the third paragraph of *ESLII-2.4*?
- e) Prove that $\operatorname{Var}(Z) = 1$ where $Z = \mathbf{a}^T \mathbf{X}$, and $\mathbb{E}[D^2] = p$ where $D = ||\mathbf{X}||$. Are the theoretical results in this part consistent with the simulated results obtained in c) and d)?