
ECE 492-45 Introduction to Machine Learning

2019 Fall Exam 1

Instructor: Dr. Chau-Wai Wong

This is a closed-book exam. You may use a scientific calculator with cleared memory, but not a

smart phone or computer. You should answer all four problems.

Problem 1 (30 pts) An ECE student named Tom plans to test the fuel economy of his car in

terms of how many gallons is needed for driving one mile. He will do four 4 test drives of

xi miles each, i = 1, · · · , 4, and will measure the corresponding gas consumption Yi gallons,

i = 1, · · · , 4 using a meter connected to his car’s microcontroller. Denote the ground-truth

fuel economy as k gallon/mile.

(a) Tom believes that the readings of the gas consumption Yi are inaccurate but unbiased, so he set

up a linear model Yi = kxi + ei, i = 1, . . . , 4, where ei are measurement noise with zero-mean

and variance σ2. Express this model in the matrix-vector form. Explicitly define y, X, β,

and e.

(b) Use the normal equation XTXβ̂ = XTy to directly obtain the analytic form of the least-

squares estimator k̂ for the fuel economy, and simplify β̂ up to a point that it cannot be

further simplified. Show that k̂ is unbiased, and derive its variance. (Hint: xi’s are constants

whereas Yi’s are random variables.)

(c) Tom’s brother proposed another way to estimate the fuel economy: k̃ =
(∑4

i=1 Yi

)
/
(∑4

i=1 xi

)
.

Show that k̃ is also unbiased, and derive its variance.

(d) Tom plans to drive 1, 2, 2, and 3 miles for each test drive, respectively. Compare numerically

the variance of the two estimators. Is the least-squares estimator better than the one proposed

by Tom’s brother?

Problem 2 (20 pts) This problem investigates nearest neighbor regression and classification.

(a) Draw an estimated regression function as horizontal line segments using 1-NN rule for the data

shown in the figure on page 2. Note that X is the predictor and Y is the response. Annotate

the locations of the discontinuities of the estimated regression function using vertical dotted

lines.

(b) In this part, class 1 should be denoted by “◦”, and class 2 should be denoted by “×”. You are

given a set of training data, in which points (1, 1), (1, 2), and (2, 2) belong to class 1, whereas

points (2, 0) and (1,−1) belong to class 2. You are also given two test points: (0,−1) and

(1.5, 0). 1-NN will be used for predicting their classes.

1



-10 -5 0 5
X

0

2

4

6

Y

(i) For every test point, draw a table showing their distance to every point in the training data.

Use the tables to determine the classes for the test points.

(ii) Draw data points on a 2D plane using “◦” and “×”. Label your x- and y-axes. Show tick and

tick labels for each axis. Draw the 1-NN decision boundary that consists of 3 linear pieces

for the training data.

(iii) What are the exact coordinates for the 2 turning points on the 1-NN decision boundary?

Show your calculation steps formally (equations) or informally (drawings with numbers) to

get full points.

Problem 3 (30 pts) Some R commands on the Boston dataset and excerpts from the R outputs

are shown as follows:

> lm_fit0 = lm(medv ~ 1)

> summary(lm_fit0)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.5328 0.4089 55.11 <2e-16 ***

> lm_fit1 = lm(medv ~ lstat)

> summary(lm_fit1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.55384 0.56263 61.41 <2e-16 ***

lstat -0.95005 0.03873 -24.53 <2e-16 ***

> lm_fit2 = lm(medv ~ lstat + I(lstat^2))

> summary(lm_fit2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.862007 0.872084 49.15 <2e-16 ***

lstat -2.332821 0.123803 -18.84 <2e-16 ***

I(lstat^2) 0.043547 0.003745 11.63 <2e-16 ***

> anova(lm_fit1, lm_fit2)

Analysis of Variance Table

Model 1: medv ~ lstat

Model 2: medv ~ lstat + I(lstat^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 504 19472

2 503 15347 1 4125.1 135.2 < 2.2e-16 ***

> anova(lm_fit0, lm_fit2)

Analysis of Variance Table

Model 1: medv ~ 1

Model 2: medv ~ lstat + I(lstat^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 505 42716

2 503 15347 2 27369 448.51 < 2.2e-16 ***

> confint(lm_fit1)

2.5 % 97.5 %

(Intercept) 33.448457 35.6592247

lstat -1.026148 -0.8739505
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(a) What is the difference between lm_fit1 and lm_fit2? What is the difference between lm_fit1

and lm_fit0?

(b) What is the hypothesis testing conducted using anova(lm_fit1, lm_fit2)? What are H0

and HA, respectively? Was this test result summarized in p-value also shown in the result for

lm_fit0, lm_fit1, or lm_fit2? If yes, identify the particular line that shows the equivalent

result. If no, please explain.

(c) Can the result for the hypothesis testing conducted using anova(lm_fit0, lm_fit2) found

anywhere else? If yes, identify the particular line that shows the equivalent result. If no,

please explain.

(d) Denote the true coefficient for lstat as β1. Determine True or False for the following state-

ments:

1. There is a 95% chance that the estimate for β1, i.e., (−1.03)+(−0.87)
2 = −0.95, is correct.

2. There is 95% confidence that [−1.03,−0.87] contains β1.

3. If the same procedure is repeatedly carried out and each time with the data drawn from

the same population/distribution, there is 95% probability that [−1.03,−0.87] contains

β1.

(e) Show in steps that the statement “β1 is in [β̂1 − 2 se(β̂1), β̂1 + 2 se(β̂1)] with 95% chance” can

be written as

P

[∣∣∣∣∣ β̂1 − β1

se(β̂1)

∣∣∣∣∣ ≤ 2

]
= 0.95.

Problem 4 (20 pts) This problem investigates the curse of dimensionality.

(a) Suppose that we have a set of observations, each with measurements on p = 1 feature, X.

We assume that X is uniformly distributed on [0, 1]. Associated with each observation is

a response value. Suppose that we wish to predict a test observation’s response using only

observations that are within 10% of the range of X closest to that test observation. For

instance, in order to predict the response for a test observation with X = 0.3, we will use

observations in the range [0.25, 0.35]. On average, what fraction of the available observations

will we use to make the prediction?

(b) Now suppose that we have a set of observations, each with measurements on p = 2 features,

X1 and X2. We assume that (X1, X2) are uniformly distributed on [0, 1] × [0, 1]. We wish

to predict a test observation’s response using only observations that are within 10% of the

range of X1 and within 10% of the range of X2 closest to that test observation. On average,

what fraction of the available observations will we use to make the prediction?
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(c) Generalize the cases in (a) and (b) to p = 100. What fraction of the available observations will

we use to make the prediction?

(d) Using your answers to (a)–(c), comment on a drawback of k-NN when p is large.

(e) Now suppose that we wish to make a prediction for a test observation by creating a p-

dimensional hypercube centered around the test observation that contains, on average, 10%

of the training observations. For p = 1, 2, and 100, what is the length of each side of the

hypercube?
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