ECE 492-45 Introduction to Machine Learning 2019 Fall Exam 1 Instructor: Dr. Chau-Wai Wong

This is a closed-book exam. You may use a scientific calculator with cleared memory, but not a smart phone or computer. You should answer all four problems.

- Problem 1 (30 pts) An ECE student named Tom plans to test the fuel economy of his car in terms of how many gallons is needed for driving one mile. He will do four 4 test drives of x_i miles each, $i = 1, \dots, 4$, and will measure the corresponding gas consumption Y_i gallons, $i = 1, \dots, 4$ using a meter connected to his car's microcontroller. Denote the ground-truth fuel economy as k gallon/mile.
- (a) Tom believes that the readings of the gas consumption Y_i are inaccurate but unbiased, so he set up a linear model $Y_i = kx_i + e_i$, $i = 1, ..., 4$, where e_i are measurement noise with zero-mean and variance σ^2 . Express this model in the matrix-vector form. Explicitly define y, X, β , and e.
- (b) Use the normal equation $X^T X \hat{\beta} = X^T y$ to directly obtain the analytic form of the leastsquares estimator \hat{k} for the fuel economy, and simplify $\hat{\beta}$ up to a point that it cannot be further simplified. Show that \hat{k} is unbiased, and derive its variance. (Hint: x_i 's are constants whereas Y_i 's are random variables.)
- (c) Tom's brother proposed another way to estimate the fuel economy: $\tilde{k} = \left(\sum_{i=1}^{4} Y_i\right) / \left(\sum_{i=1}^{4} x_i\right)$. Show that k is also unbiased, and derive its variance.
- (d) Tom plans to drive 1, 2, 2, and 3 miles for each test drive, respectively. Compare numerically the variance of the two estimators. Is the least-squares estimator better than the one proposed by Tom's brother?

Problem 2 (20 pts) This problem investigates nearest neighbor regression and classification.

- (a) Draw an estimated regression function as horizontal line segments using 1-NN rule for the data shown in the figure on page 2. Note that X is the predictor and Y is the response. Annotate the locations of the discontinuities of the estimated regression function using vertical dotted lines.
- (b) In this part, class 1 should be denoted by " \circ ", and class 2 should be denoted by " \times ". You are given a set of training data, in which points $(1, 1), (1, 2)$, and $(2, 2)$ belong to class 1, whereas points $(2,0)$ and $(1,-1)$ belong to class 2. You are also given two test points: $(0,-1)$ and (1.5, 0). 1-NN will be used for predicting their classes.

- (i) For every test point, draw a table showing their distance to every point in the training data. Use the tables to determine the classes for the test points.
- (ii) Draw data points on a 2D plane using " \circ " and " \times ". Label your x- and y-axes. Show tick and tick labels for each axis. Draw the 1-NN decision boundary that consists of 3 linear pieces for the training data.
- (iii) What are the exact coordinates for the 2 turning points on the 1-NN decision boundary? Show your calculation steps formally (equations) or informally (drawings with numbers) to get full points.
- Problem 3 (30 pts) Some R commands on the Boston dataset and excerpts from the R outputs are shown as follows:

```
> lm_fit0 = lm(medv \degree 1)
> summary(lm_fit0)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.5328 0.4089 55.11 <2e-16 ***
> lm_fit1 = lm(medv \degree lstat)
> summary(lm_fit1)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.55384 0.56263 61.41 <2e-16 ***
lstat -0.95005 0.03873 -24.53 <2e-16 ***
> lm_fit2 = lm(medv \sim lstat + I(lstat\sim2))
> summary(lm_fit2)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.862007 0.872084 49.15 <2e-16 ***
lstat -2.332821 0.123803 -18.84 <2e-16 ***
I(lstat^2) 0.043547 0.003745 11.63 <2e-16 ***
> anova(lm_fit1, lm_fit2)
                                                     Analysis of Variance Table
                                                     Model 1: medv ~ lstat
                                                     Model 2: medv ~ lstat + I(lstat^2)
                                                       Res.Df RSS Df Sum of Sq F Pr(>F)
                                                     1 504 19472
                                                     2 503 15347 1 4125.1 135.2 < 2.2e-16 ***
                                                     > anova(lm_fit0, lm_fit2)
                                                     Analysis of Variance Table
                                                     Model 1: medv \degree 1
                                                     Model 2: medv \tilde{ } 1stat + I(1stat\tilde{ }2)
                                                       Res.Df RSS Df Sum of Sq F Pr(>F)
                                                     1 505 42716
                                                     2 503 15347 2 27369 448.51 < 2.2e-16 ***
                                                     > confint(lm_fit1)
                                                                    2.5 \% 97.5 %
                                                     (Intercept) 33.448457 35.6592247
                                                     lstat -1.026148 -0.8739505
```
- (a) What is the difference between lm_fit1 and lm_fit2? What is the difference between lm_fit1 and lm_fit0?
- (b) What is the hypothesis testing conducted using anova $(\text{lm_fit1}, \text{lm_fit2})$? What are H_0 and H_A , respectively? Was this test result summarized in p-value also shown in the result for lm_fit0, lm_fit1, or lm_fit2? If yes, identify the particular line that shows the equivalent result. If no, please explain.
- (c) Can the result for the hypothesis testing conducted using anova(lm_fit0, lm_fit2) found anywhere else? If yes, identify the particular line that shows the equivalent result. If no, please explain.
- (d) Denote the true coefficient for later as β_1 . Determine True or False for the following statements:
	- 1. There is a 95% chance that the estimate for β_1 , i.e., $\frac{(-1.03)+(-0.87)}{2} = -0.95$, is correct.
	- 2. There is 95% confidence that $[-1.03, -0.87]$ contains β_1 .
	- 3. If the same procedure is repeatedly carried out and each time with the data drawn from the same population/distribution, there is 95% probability that $[-1.03, -0.87]$ contains β_1 .
- (e) Show in steps that the statement " β_1 is in $[\hat{\beta}_1 2 \text{ se}(\hat{\beta}_1), \hat{\beta}_1 + 2 \text{ se}(\hat{\beta}_1)]$ with 95% chance" can be written as $\overline{\Gamma}$ $\sim 10^{-11}$

$$
\mathbb{P}\left[\left|\frac{\hat{\beta}_1 - \beta_1}{\text{se}(\hat{\beta}_1)}\right| \le 2\right] = 0.95.
$$

Problem 4 (20 pts) This problem investigates the curse of dimensionality.

- (a) Suppose that we have a set of observations, each with measurements on $p = 1$ feature, X. We assume that X is uniformly distributed on $[0, 1]$. Associated with each observation is a response value. Suppose that we wish to predict a test observation's response using only observations that are within 10% of the range of X closest to that test observation. For instance, in order to predict the response for a test observation with $X = 0.3$, we will use observations in the range [0.25, 0.35]. On average, what fraction of the available observations will we use to make the prediction?
- (b) Now suppose that we have a set of observations, each with measurements on $p = 2$ features, X_1 and X_2 . We assume that (X_1, X_2) are uniformly distributed on $[0, 1] \times [0, 1]$. We wish to predict a test observation's response using only observations that are within 10% of the range of X_1 and within 10% of the range of X_2 closest to that test observation. On average, what fraction of the available observations will we use to make the prediction?
- (c) Generalize the cases in (a) and (b) to $p = 100$. What fraction of the available observations will we use to make the prediction?
- (d) Using your answers to (a)–(c), comment on a drawback of k-NN when p is large.
- (e) Now suppose that we wish to make a prediction for a test observation by creating a pdimensional hypercube centered around the test observation that contains, on average, 10% of the training observations. For $p = 1, 2$, and 100, what is the length of each side of the hypercube?

Name: Student ID: Answer to Problem 1: Name:

Answer to Problem 2(a):

Answer to Problem 2(b):

Name:

Answer to Problem 3:

Name:

Answer to Problem 4: