ECE 492-45 Homework 3

Material Covered: Statistical Learning Introduction, Linear Regression

Problem 1 (20 points) [Optimality of Mean Operators]

- a) We are given two variables X and Y that are not independent. Hence, we may use one to estimate the other. Find the best deterministic function $g(\cdot)$ such that it minimizes the expected squared error between Y and $g(X)$ conditioned on $X = x$. You may find a change of variable using θ in the place of $g(x)$ helpful.
- b) Arithmetic average, or the sample mean in a statistical context, is commonly used in everyday life for making quantitative description. We examine a statistical interpretation for the arithmetic average below. A person weighs μ lb. He tried multiple scales in a supermarket and recorded the reading from each scale, denoted by Y_i for the *i*th scale. We may create a linear model as follows to relate the true weight μ and the measurement Y_i :

$$
Y_i = \mu + e_i, \quad i = 1, \dots, N,
$$

where e_i is the measurement error of the *i*th scale. Use the mean-square criterion $J(\mu)$ = 1 $\frac{1}{N}\sum_{i=1}^{N}(Y_i-\mu)^2$ to find the closed-form expression for the best estimator for μ . The expression should contain ${Y_i}_{i=1}^N$ only, and should not contain such symbols as μ or e_i as they were not available when readings were recorded. Does the expression make intuitive sense?

Problem 2 (20 points) [Alternative Neighbor Averaging Method for Simulated Data]

- a) Given a regression function $f(x) = x^2 + 2x + 1$ and a linear model $Y = f(X) + e$, where $e \sim N(0, 1)$ and $X \sim$ Uniform(-1,1), generate 50 pairs of (x_i, y_i) and graph them using black circles. Also plot the regression function using a black solid curve.
- b) We use a method similar to the nearest neighbor averaging to estimate the regression function. We use a neighborhood of fixed radius $\delta = 0.1$. The estimated regression function takes the following form:

$$
\hat{f}(x) = \frac{1}{|I(x)|} \sum_{i \in I(x)} y_i, \quad I(x) = \{i : |x - x_i| \le \delta\},\tag{1}
$$

where $I(x)$ is the set of indices of x_i such that they are within δ in terms of distance from x, and $|I(x)|$ is the number of elements of set $I(x)$. For example, when $x = 0.9$ and $\delta = 0.1$,

you first need to find all points that are within the range of $[0.8, 1.0]$ in the x-direction, and then take the average of their values in the y-direction to obtain $\hat{f}(0.9)$. You may want to calculate $\hat{f}(\cdot)$ for all $x \in [-0.9, 0.9]$ with a stepsize 0.01. If there is not a single point within the current neighborhood, use the \hat{f} from the previous step as that for the current step. Draw the estimated regression function using a red solid curve in the same plot of a).

- c) (Bonus, 5 points) Vary the neighborhood radius δ , how does the shape of the estimated regression function change?
- **Problem 3** (20 points) [k-Nearest Neighbors] Complete ISLR-2.4.7. Repeat (a)–(c) for $(X_1, X_2, X_3) \in$ $\{(1, 2, 3), (1, -1, 1)\}.$ Bonus (10 points): Using a programming language of your choice, refactor your code into a function named MyKnn with the following input and output variables. We have shown below examples in R and Matlab, but you may also use Python. R: $MyKnn = function(x1, x2, x3, k)$ { ... return(Y) Matlab: function $Y = MyKnn(x1, x2, x3, k)$... end

```
}
```
The file containing the function should be named MyKnn with extension \cdot **r**, \cdot **m**, or \cdot **py** and uploaded to the submission link posted on Piazza. The performance of the uploaded function will be automatically/manually assessed, and bonus will be given solely on the percentage of correct classifications using test data. You can assume that when the function is evaluated, the input variables $x1$, $x2$, $x3$ will be any value in \mathbb{R} , k will be less than 6, and the return value being checked against will be either "Red" or "Green".

Problem 4 (20 points) [Least squares]

a) We have proved in class that the least-squares estimator for β_1 of model $y_i = \beta_0 + \beta_1 x_i + e_i$ is

$$
\hat{\beta}_1 = \frac{\sum x_i y_i - n \bar{x} \bar{y}}{\sum x_i^2 - n \bar{x}^2}.
$$
\n(2)

Prove that the above expression is equivalent to

$$
\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}.
$$
\n(3)

b) (Try it only after 9/16 lecture) Write model $y_i = \beta_0 + \beta_1 x_i + e_i$, $i = 1, ..., n$ into the matrixvector form. Clearly indicate what are y, \mathbf{X}, β , and \underline{e} . Set up the cost function $J(\beta)$ to be minimized. Take gradient with respect to β and set it to zero. Express $\hat{\beta}$ in terms of **X** and y. What are the closed-form solution for $\hat{\beta}_0$ and $\hat{\beta}_1$. Is $\hat{\beta}_1$ consistent with that in a)?

Problem 5 (20 points) [Linear Regression with R] Complete $ISLR-3.6.1-3$, 3.6.7, 3.7.8.