
ECE 492-45 Homework 6

Material Covered: Logistic Regression, Linear/Quadratic Discriminant

Analysis, Type I/II Error, ROC

Useful information Formal definition for covariance matrix: The variance-covariance matrix,

or the covariance matrix for simplicity, can be regarded as a generalization from the variance of a

random variable X to a variation measure for a random vector X˜ = (X1, · · · , Xn). Its definition is

as follows:

Cov(X˜ ) = E
[
(X˜ − E[X˜ ])(X˜ − E[X˜ ])T

]
. (1)

Note that the covariance matrix is always a square matrix resulted from a vector outer product.

If we explicitly write out the covariance matrix for a length-2 random vector x˜ = (X1, X2), its

elementwise expression is as follows:

Cov(X˜ ) =

 Var(X1) Cov(X1, X2)

Cov(X2, X1) Var(X2)

 . (2)

For more details about its definition, refer to Section 6.3.1 of Leon-Garcia’s book. For its application

in the multivariate Gaussian distribution, refer to Section 6.4. You may also try to read the

“covariance matrix” entry on Wikipedia, but the key information may be buried in details.

Problem 1 (20 points) [Stock Market Direction Prediction] Complete ISLR-4.6.1–5, 4.7.10. Be

super concise when reporting the results for 4.6.1–5, and be selective when reporting the

results for 4.7.10.

Problem 2 (20 points) [Boston Dataset Prediction] Complete ISLR-4.7.13.

Problem 3 (20 points) [Decision Making and Associated Probability] Complete ISLR-4.7.6–7.

Problem 4 (20 points) [Quadratic Discriminant Analysis (QDA)]

(a) Random variables X1 and X2 are two predictors/features that will be used later to generate

a dataset for classification. They are related by a first-order autoregressive model defined as

follows:

X2 = ρX1 + e, (3)
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where ρ ∈ (0, 1) is a fixed constant, both X1 and X2 are of mean µ and variance σ2, and

e ∼ N
(
0, (1− ρ2)σ2

)
is independent of X1. Prove that µ = 0 and cov(X1, X2) = ρσ2. Justify

each entry of the variance-covariance matrix for random vector (X1, X2) of the following form:

Σ = σ2

1 ρ

ρ 1

 . (4)

(b) Using Eq. (3), simulate 500 data points for class 1 and class 2 with following multivariate

Gaussian distributions respectively:

(X
(1)
1 , X

(1)
2 ) ∼ N

0

0

 , σ2
1 ρ

ρ 1

 , (5)

(X
(2)
1 , X

(2)
2 ) ∼ N

d
0

 , σ2
1 0

0 1

 , (6)

where σ2 = 1, ρ = 0.8, and d = 4. Plot all data points in plane. Use “o” for class 1 and “*”

for class 2. Note that for class 2, the center is (d, 0).

(c) The decision boundary is a set of 2nd-order curves shown as follows:

ρc(x21 + x22)− 2cx1x2 + 2dx1 − d2 + σ2 ln(1− ρ2) = 0, (7)

where c = ρ/(1 − ρ2). Use a brute-force method to draw on the data plot the theoretical

decision region for class 1. Your result will be similar to the following example.
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(d) (Bonus, 5 points) Start from the density function of the multivarite Gaussian, prove the ex-

pression for decision boundary given in (c). Assume equal prior.

Problem 5 (20 points) [Two-Class Discrimination]

(a) Complete ISLR-4.7.3 to obtain a discriminant score/function δk(x) for class k. (Hint: After

taking ln[πkfk(x)], remove all additive terms that do not contain x AND k.)

(b) Prove that the decision threshold between class 1 and class 2 is one of the roots of the following

quadratic equation:(
1

σ21
− 1

σ22

)
x2 − 2

(
µ1
σ21
− µ2
σ22

)
x+

(
µ21
σ21
− µ22
σ22

)
+ 2 ln

(
π2σ1
π1σ2

)
= 0. (8)

(c) (Attempt this after Monday’s lecture) Let µ1 = 0, µ2 = 5, σ1 = 1, σ2 = 2, and assume equal

prior for both classes. Simulate 5,000 points for each class. Draw histograms for the two

classes in the same plot. What is the theoretical decision threshold according to (b)? Use

this decision threshold to calculate a confusion matrix. Clearly indicate the dimensions for

ground truth and for predicted results, respectively. What are the False Positive Rate (FPR)

and False Negative Rate (FNR)?

(d) (Attempt this after Monday’s lecture) Generate an ROC curve by varying threshold from the

small value to the largest value of the overall dataset. (Hint: Your ROC curve should tell

you that at 10% false positive, the true positive rate should be from 96%–98%.)
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