
Overview of Modern ML Applications: 

Convolutional Neural Network (CNN)

Learning objectives

o Describe the structure of CNN

o Build and train simple CNNs using a deep learning package

(Ref: Ch 9 of Goodfellow et al. 2016)

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS231n by Fei-Fei Li et al.:  

http://cs231n.stanford.edu/ F21v3

https://www.deeplearningbook.org/


Convolutional Neural Network (CNN)

2LeCun, Bottou, Bengio, Haffner, “Gradient-Based Learning Applied to Document Recognition,” Proc. IEEE,  1998.
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The single most important technology that fueled the rapid 

development of deep learning and big data in the past decade. 



Why is Deep Learning so Successful?

1. Improved model:  convolutional layer,  more layers (“deep”),  simpler 

activation (i.e., ReLU),  skip/residual connection (i.e., ResNet),  attention 

(i.e., Transformer)

2. Big data:  huge dataset,  transfer learning

3. Powerful computation:  graphical processing units (GPUs)

◆ Example of big data:  ImageNet (22K categories, 15M images)

3Deng, Dong, Socher, Li, Li & Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” IEEE CVPR, 2009.



4(Fei-Fei Li et al., CS231n)



Linear Model to Neural Network
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Fully-Connected Layer for 1D Signal



Fully-Connected Layer for RGB Image 

7(Fei-Fei Li et al., CS231n)
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Convolutional Layer for 1D Signal
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Convolutional Layer for 2D Matrix/Image

2D Convolution

Multiple color 

channels need 

multiple filter masks



Convolutional Layer for RGB Image 

10(Fei-Fei Li et al., CS231n)



11(Fei-Fei Li et al., CS231n)



12(Fei-Fei Li et al., CS231n)
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Six 5x5x3 filters

(Fei-Fei Li et al., CS231n)
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Building Block for Modern CNN

(Rectified Linear Unit)
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CNN is composed of a sequence of convolutional layers, 

interspersed with activation functions (ReLU, in most cases).

(Fei-Fei Li et al., CS231n)

Source of nonlinearity, ReLU: 



16(Fei-Fei Li et al., CS231n)



17(Fei-Fei Li et al., CS231n)

ResNetAlexNet



Residual Neural Network (ResNet) [Kaiming He et al., 2015]
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◆ Skip connections or shortcuts are added.

◆ They can 

 avoid “vanishing gradients”, and

 make optimization landscape flatter.

◆ From Taylor expansion perspective, the neural 
network only learns the higher-order error 
terms beyond the linear term x.

◆ Has interpretations in PDE.

◆ Preferred modern NN structure.

Layer 1

Layer 2

Layer 3



◆ A softmax layer is needed:

◆ Softmax function: 

◆ Ex: 

When Output is Categorical / Qualitative

19
Winner takes all!



Other Essential Aspects of CNN

◆ Due to time constraints, this overview lecture covered only the 

structural elements of CNNs. Other essential aspects are:

 Cost function, e.g., MSE, cross entropy. (will cover if time permits.)

 How to train CNNs (estimate the weights), i.e., backpropagation. (will 

cover if time permits.)

 Practical training considerations including

• How to determine number of hidden units/channels to be used, 

• How to tune learning rate and batch size, and 

• When to stop training (number of epochs).

◆ For a more complete treatment on CNN, refer to the dedicate 

courses such as CS231n CNNs for Visual Recognition.
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https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv


Machine Learning (ML) and Data Science (DS)

◆ Follow-up machine learning / data science courses:

➢ ECE 542 Neural Nets and Intro to Deep Learning

➢ ECE 592-61 Data Science

➢ ECE 759 Pattern Recognition and Machine Learning

➢ ECE 763 Computer Vision

➢ ECE 792-41 Statistical Foundations for Signal Processing & Machine Learning

 Any courses/videos on YouTube, Coursera, etc.

◆ State-of-the-art theory & applications: ICML, NeurIPS, ICLR, AAAI

◆ Data science competitions:  kaggle.com

◆ Programming languages for ML/DS:  Python,  R,  Matlab
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Overview of Modern ML Applications: 

Recurrent Neural Network (RNN)

and LSTM

Acknowledgment: Some graphics and slides were adapted from Stanford’s CS231n by Fei-Fei Li et al.:  

http://cs231n.stanford.edu/



A Sequence of Identical Neural Network Modules
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Image Captioning 

image -> seq of 

words

Emotion 

Classification 

seq of words 

-> emotion

Machine Translation 

seq of words -> seq of 

words

Video 

classification 

at frame level

Input

NN 

module

Output

Force the neural nets (in green) to be the same to lower the complexity! 



Recurrent Neural Network (RNN):  Definition
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ht : state, xt : input 

fW : neural network



Recurrent Neural Network (RNN):  

Implementation
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fW is implemented via 

- linear transforms Whh and Wxh and

- elementwise nonlinear function tanh(∙)

tanh(∙)

Diagram for fW. 

Can you label the details? 



Recurrent Neural Network (RNN):  Unrolled
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Example: Character-Level Language Model
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Vocabulary: 

[h, e, l, o] 

Embedding:

Example training 

sequence: 

“hello”



28

Vocabulary: 

[h, e, l, o] 

At test time, sample 

characters one at a 

time, feed back to 

model



Long Short-Term Memory (LSTM) Network

◆ RNN has the “vanishing gradient” problem!

◆ Resolved by long short-term memory (LSTM) units.
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RNN LSTM



An LSTM Unit [Hochreiter et al., 1997]
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Overview of Modern ML Applications: 

Transformers and BERT

Acknowledgment: Some graphics and slides were adapted from

https://peltarion.com/blog/data-science/self-attention-video



How to make good sense of language?

◆ Reading comprehension: If you were Google, what result(s) should 

you return for “brazil traveler to usa need a visa”?

1. A webpage on U.S. citizens traveling to Brazil

2. A webpage of the U.S. embassy/consulate in Brazil

◆ Contextualization is the key!

 A nice walk by the river bank.

Walk to the bank and get cash.
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Word Embeddings in Natural Language Processing (NLP)
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Embedding examples: Bag of Words (BoW),  Word2Vec,  …



Word Embeddings are Meaningful Under “+” and “−” 
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Contextualization by “Attention”
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How does “attention” work?

Similarity 

measure

Exponential saturation 

& normalization

Linear 

combination



Similarity Measure via Inner Product
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Exponential Saturation & Normalization via Softmax
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Contextualization via Linear Combination
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Raw embeddings

Contextualized embeddings

Weights for linear combination



Key, Value, and Query

◆ “Key”, “value”, and “query” are 

three projections of an input 

embedding to three vector

subspaces. 

◆ Each subspace represents a 

unique semantic aspect.

◆ The projection operators / 

matrices provide trainable

parameters for Transformer

neural networks.
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(e.g., preposition)

(e.g., location)



Multi-Head Attention
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Bidirectional Encoder 

Representations from 

Transformers (BERT)
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Neural Network Training: 

Backpropagation

Acknowledgment: Some graphics and slides were adapted from Profs. Jain (MSU), Min 

Wu (UMD), Fei-Fei Li (Stanford)

Some figures are from Duda-Hart-Stork textbook, Fei-Fei Li’s slides



3-Layer Neural Network Structure

◆ A single “bias unit” is connected to each unit in addition to the input units

◆ Net activation:

where the subscript i indexes units in the input layer, j indexes units in the 
hidden layer; 

wji denotes the input-to-hidden layer weights at hidden unit j.

 In neurobiology, such weights or connections are 
called “synapses”

◆ Each hidden unit emits an output that is 
a nonlinear function of its activation

yj = f (netj)
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Training Neural Networks / Estimating Weights

• Notations:  tk ~ the kth target (or desired) output,

zk ~ the kth estimated/computed output with k = 1, …, c. 

wij ~ weight of the network

• Squared cost func:

• Learning based on gradient descent by iteratively updating the weights:

w(m + 1) = w(m) + w(m),

• The weights are initialized with random values, 

and updated in a direction to reduce the error.

• Learning rate, , controls the step size of the update in weights.
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Walking man image is CC0 1.0 public domain Figure source: Stanford CS231n by Fei-Fei Li



Gradient Descent

Figure source: Stanford CS231n by Fei-Fei Li



Efficient Gradient Calculation: Backpropagation

◆ Computes 𝜕𝐽/𝜕𝑤𝑗𝑖 for a single input-output pair.

◆ Exploit the chain rule for differentiation, e.g.,

◆ Computed by forward and backward sweeps over the network, 

keeping track only of quantities local to each unit.

◆ Iterate backward one unit at a time from last layer. Backpropagation 

avoids redundant calculations.
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Backpropagation (BP): An Example

Figure source: Stanford CS231n by Fei-Fei Li



Network Learning by BP (cont’d)

 Error on hidden-to-output weight:

 δk , the sensitivity of unit k :
describes how the overall error changes with 
the activation of the unit’s net activation

 Since netk = wk
t y , we have

 Summary 1: weight update (or learning rule) for the hidden-to-output 
weight is:

wkj =  (tk – zk) f’(netk) yj =  k yj
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Network Learning by BP (cont’d)

 Error on input-to-hidden weight:

• chain rule:

•

 Sensitivity of a hidden unit: 

(Similarly defined as earlier)

 Summary 2: Learning rule for the input-to-hidden weight is:
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Sensitivity at Hidden Node



BP Algorithm:  Training Protocols

◆ Training protocols: 

 Batch: Present all patterns before updating weights

 Stochastic: patterns/input are chosen randomly from training set; network weights are 

updated for each pattern

 Online: present each pattern once & only once (no memory for storing patterns)

◆ Stochastic backpropagation algorithm:

Begin initialize nH; w, criterion thres, , m  0

do m  m + 1

xm  randomly chosen pattern

wji  wji + jxi; wkj  wkj + kyj
until ||J(w)|| < thres

return w

End

ECE 492-45 Introduction to Machine Learning



BP Algorithm:  Stopping Criterion

◆ Algorithm terminates when the change in criterion function 

J(w) is smaller than some preset thres
 Also exist other stopping criteria with better performance

◆ A weight update may reduce the error on the single pattern 

being presented, but can increase the error on the full training 

set
 In stochastic backpropagation and batch propagation, we should make 

several passes (epoches) through the training data



Learning Curves

 Before training starts, the error on 

the training set is high; as the learning 

proceeds, error becomes smaller

 Error per pattern depends on the 

amount of training data and expressive 

power (e.g. # of weights) in the network

 Average error on an independent test 

set is always higher than on the training 

set, and it can decrease or increase

 A validation set is used in order to decide when to stop training: 

• Avoid overfitting the network and decrease the power of the classifier’s 

generalization

“Stop training when the error on the validation set is minimum”



Practical Considerations:  Learning Rate
◆ Learning Rate

 Small learning rate: slow convergence

 Large learning rate: high oscillation and slow convergence


