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Machine Learning: An Introduction (mes, Witcn, Haste, & Tbsirar, 2013)
Data Iteration 1, Step 2a Final Results
¢ Unsupervised learning: K b
+ Learns from a set of unlabeled '.".::I::::' : A O
data to discover patterns, R | ...
without human supervision. R T . O - RS T
+ We'll cover principal A W a0 . Y R
principa e AT e BT : BT
component analysis (PCA). "o ’ N

¢ Supervised learning:

+ Learns an input—output mapping based on
labeled data.

+ We'll cover linear
regression and neural

networks.
(Li and Russakovsky, 2013)



NC STATE UNIVERSITY

Machine Learning Topics and Learning Objectives

¢ Topic |:Linear algebra

+ Explain linear algebra concepts such as linear independence, vector space,
and orthogonal basis

+ Conduct eigendecomposition for symmetric matrices using Matlab

¢ Topic 2: Principal component analysis (unsupervised learning)
+ Explain the two equivalent goals of PCA
+ Implement the PCA algorithm and visualize the results

¢ Topic 3:Linear regression and prediction (supervised learning)
+ Interpret regression problem mathematically and geometrically
+ Apply linear regression to learning problems without overfit

¢ Topic 4: Convolutional neural network (CNN)
+ Describe the structure of CNN
+ Build and train simple CNNs using a deep learning package 3



NC STATE UNIVERSITY

Linear Algebra

Learning objectives

o Explain linear algebra concepts such as linear independence, vector space,
and orthogonal basis

o Conduct eigendecomposition for symmetric matrices using Matlab

(Refer to ECE 220’s textbook for a review on vector and matrix. A comprehensive treatment of
linear algebra can be found in Scheffe’s appendices, available on the library’s course reserves.)



https://www.dropbox.com/s/0budechw7dj2y4y/ScheffeHenry_AppendicesIandII.pdf?dl=0
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Linear Algebra Review: Vector

- Vector: an ordered n-tuple.

Row vector: X = |z1, @2, ..., &p]

T
Column vector: x = [331, T2, ..., wn]
(Assume all vectors are column from now on.)

- Vector properties:
X+y=y-+x (commutative)
x+(y+2z)=(x+y)+z (associative)
C [xl, . ,xn] = [ca:l, . ,c:z:n] (scaling)

N

- Norm/length: [|x|| = (x7x)%, e.g.,x = [3,4] ", ||x|| = 5.
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Linear Algebra Review: Vector (cont’d)

Inner product of x and y:

Y1
Ty =[onoswa] | 1 =Xl iy =y'x.
| Yn_
- xly = [1x|[ - [y [l cos Ox.y 1‘2’9), Bxix= 1’0127“2: =Lt 1.140-1 V2
g €08 Oxy = [Tyl = Vizsor.virgi? = 2.
~ = Ox,y = 45°

Def: x and y are orthogonal if x’'y = 0.

Remark: When x’y = 0, cos™! ( ) ) — km,
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Linear Algebra Review: Matrix

ayp aiN
a1 v Q2N
- Matrix: A = [ap] = | . . .| e RMXN M rows, N columns.
lam1 -t AMN |

Addition: A +B = [ax; + br] =B+ A

Scaling: cA = [cap] Ex: 2 [O 1} _ [1 2] _ [—1 o}

2 3 3 4 1 2
1 2
- Transpose “T”: AT = [ay]” = [a;n] Ex: ] [
2 4 6 . 6

Special matrices: Onrxn = [0laprxn, Larxny = [arxn,

I ... 0
In=|: -.. 1| =diag(ones(M,1)).
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Linear Algebra Review: Matrix (cont’d)

- Matrix Multiplication: C = AB, wherecy; = Zé\;l akgbg = Ak, )B(:, 1)

column [

\

row k—> %

oA L

Ak, ) B(:,0)
113 4] [3+5 4+6] [8 10
1|5 6| |-3+5 —4+6| |2 2

= B if () A is square, and @) AB =1 = BA.

Note: In general,
AB # BA. Why?
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Linear Algebra Review: Matrix (cont’d)

-1 T
. B a b d —C d —b
- For 2-by-2 matrices: A = [c d] — ﬁ [—b a } - adl—bc [—c a}
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Motivation: Linear Algebra for Discrete Convolution
Ex: z[n] = {%,0,2,0, 1,0,—1}, hln] = {—11,2,—1}- yln] = x[n] * h[n] =7

z[0] length =7 h[0] length =3 length =?
Matrix-vector form:
11 [ 0] Fup ¥ Glide .
2 2 —1 (1]
_3 —1 21 —21 1 0 } X k]
4 - - 2
i -12 -l ! Ejééa{;[cﬂ?k
(2) -1 2 -1 é
-1 2 -1 Shi -n
—2 1 9| 1] [ ji_si | hF{iE
i 1 i i 0 ces _1_ q{ - al_-'_g_ 4 b

10
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Linear Independence of a Set of Vectors
& Def: Given {Vl, . ,Vn}. For 1 vy +---+a,v, =0,
If a; =0,Vs, then“linearly independent;”

If not all o; = 0, then “linearly dependent.”

¢ For “linearly dependent” case (when a; # 0) , we may write:
vi = Bovo + -+ BaVn Why?
¢ Ex vi=[1 2 1], vo=[1 0 1]".

1 a1 +ag =0 o —
0]=0 =¢{ 2014+0=0 ;‘{Of:o
1 a1 +ay =0 2=

1
2
1

o + = linearly independent

11
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Linear Independence of a Set of Vectors (cont’d)

B vi=[1 2 1], vy=[2 -4 —2]".

v, = —2v; = linearly dependent
}T

B vi=[1 2 1], vo=[1 0 1]",vs=[0 1 0]".

v1 = Vg + 2v3 = linearly dependent

12
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Vector Space

@ Def: Vector space: A set, V, of all vectors that are linear
combination of {v;}i-{ ,i.e.

n
V = {V — Zaiv,,;, a; € R}.
1=1
V;’s are said to span the vector space,i.e., V = span{v;,...,v,}.

‘EX: | 0 éf
V(l)_{ [O]+a2[1]7aZ€R G %S

ve —{n| ] |+r| L, | nezr) 3%

Ul
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Basis for Vector Space

¢ Def: A basis for V'is a set of linearly independent vectors that span V.

¢ Ex

14
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Dimension of Vector Space

¢ Def: The dimension of vector space V' is the number of vectors in
any/a basis of V.

¢ Column/row rank: The dimension of column/row vector space,
respectively.

¢ Ex: What’s the column rank of matrix

1 1 0
X=12 0 1|7
1 1 0
It’s just another way to ask: what’s the dimension of vector space
1 1 0

V:{V:al 2 | +ay| 0 | +as3| 1 ,oz,,;E]R}?
1 1 0

15
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Dimension of Vector Space (cont’d)

¢ Approach |: By observation, we notice that any two pairs of
vectors spanned V are linearly independent. Hence, we can
immediate write out at least three bases:

(L) e ARLEL = 1l

Hence, the column rank of X or dimension of vector space V'is 2.

¢ Approach 2: Define the three vectors to be vi,va,vs, respectively.

V = {v = ] (VQ + 2V3) + aava + 3 vs vy L vy = they are
linearly independent.

- {V = (o1 + az)ve + (201 + 0‘3)V3}' So the dim/rank is 2.

16
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Projection of aVector on a UnitVector

4 Project a vector X on a unit vector u:
+ Projection length is u’x. (a number, with sign)

+ Projected vector is (u’x)u. (a scaled vector along u)

¢ Proof (projection length):

X

x'y =[x |y] cost, letu=y/][yll. X
o |
ey

x (Hi_” — |x]| cos# = u”x. Longtl = o o0

17
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Projection of aVector on a UnitVector

¢ Example:
T
w-[4.4
A . T
N x; = [~1,—3]
. T
e A X2 = [_i 1}
~ ?—S} 273
RSN
\ s
e 711 =ufx; = L. (-3
Z91 = %
231 = 5V/2

18
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Projection One Vector on Another

¢ Project a vector X on a vector y:
+ Projection length is y'x/||y|l. (a number, with sign)
+ Projected vector is (y7x)y/||y||?. (a scaled vector along y)

¢ Proof (projected vector):

Projection of x onto y = (u’x) u A7

PNy AN
i Knyn) ] o ~ 0/ I |y e

I

19
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Orthonormal Basis

® Def: A basis {a,,...,a} for Vis called orthonormal if  vectors are

pairwise orthogonal and have unit norm.

¢ Ex: Given a vector space

1 1 0
V:{V:a1 2 | +as| O | +a3| 1
1 1] 0
1] [1 1] [o]) 1] [0
21, 10 20, 1] % 0|, |1
1| |1 1] |o] ] 1| |0
Basis, but Basis, but Basis w/ orthogonal vectors.
nonorthonormal. nonorthonormal.  Can normalize [1 0 1]7 to

obtain an orthonormal basis.

,Oéz'ER}

{HRHR)

Not even a basis.
Why?2?

20
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Orthogonal Matrix

¢ Def: A square matrix P is orthogonal if and only if its columns (or
rows) constitute an orthonormal basis.

¢ Properties:
+ PTP=PPT =1

+Pl=pP7
T
¢ Ex Lo 0 1/v2 1/V2 vl 0 1 0

P=|vy v, vs|=1[1 0 0 PT=| vi | =[1/V2 0 1/V2 (Block
I I 0 1/\/5 _1/\/5 Vg" 1/\/5 0 1/\/5 tr'ICk)
-_\_rrfp_ o vivy 0 0 1 0 0

P'P=| VI | |vivaavsl=] 0 ~vIva 0 |=|0 1 0of=I
VT . 0 0 vivs 0 0 1
B 2 2
0+(%) +(=%) 0 +-13

PP’ = (‘/E)O (ﬁ) 1 o | =TI (Directevaluation)

0 0 1 21
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Eigenvector and Eigenvalue

¢ Def: Let A be an n-by-n matrix. A nonzero vector v is called an
eigenvector of A if Av =2Av. Here, A is called a eigenvalue of A and
v is eigenvector corresponding to eigenvalue A.

4

Prefix “eigen” means “characteristic.”

4

Physical interpretation: Operator A is invariant to v, which means
that A acts on v can only change its length but not the direction.

& Ex:
3 0] [
s —1I"V 7 |2|

Since Av = [3'1+0'2] = [3] = 3v,

Let A =

8-1—-1-2 6
the eigenvalue A = 3.

22
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Eigendecomposition for Symmetric Matrices

¢ Def: A square matrix A is symmetric if A = A”.

¢ Thm: A p-by-p symmetric matrix R can be diagonalized by an
orthogonal matrix V =[vy, ..., v,|. The following statements are
equivalent:

AN - 0
1. R=VAVT Z,RV—VA—[Vl---Vp]|:E l

Vol | o o i ol .
] 0 - A vz 3. RV?;:)\iVi, ZZl,...,]).

i=1 23
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Eigendecomposition Using Matlab

1 4 5
¢ Ex:Use Matlab to decompose matrix A= |4 -3 0
o 0 7

& Source code:

A=1[145;4-30;58®07],;
[V, D] = eig(A); % use built-in function for eigendecomposition

for j =1 : size(D, 1)
if norm(A * V(:, j) - D(Jj, j) * V(:, Jj)) < 1le-5 % verify result
disp([ 'Eigenvector-value pair ' int2str(j) ' verified.'])

end
end Can you numerically verify the 3 equivalent
expressions on the previous slide!?
¢ Output: ? P
V = D =
0.5952 0.6072 0.5263 -6.0892 %) %)
-0.7707 0.6167 0.1601 (%] 0.9383 %)

-9.2274  -0.5009  ©0.8351 0 0 10.1509 y
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Eigendecomposition by Hand (optional)

¢ Thm: Eigenvalues are roots of the characteristic polynomial det(A— AI).

1 2

oman([ 3] 4[5 2]) ("3 240])

=X —TA+6=X\ =6, Ao = 1.

® BEx A= [5 4]

Nonunique solutions
] for underdetermined

- B —vi+4vy =0 _ |4
For Ay = 6, (A_MI)V_O@{Vl—‘lV?:O :>V_[ ]

systems

B B 4vi +4veg =0 o 1
For Ay =1, (A_AQI)V_O(:){V1+V2=0 :>V—[_1

25
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Principal Component Analysis . ;
(Unsupervised Learning)

Learning objectives
o Explain the two equivalent goals of PCA

o Implement the PCA algorithm and visualize the results
(Ref: 10.2 of James et al. 2013, 12.2 of Murphy 2012. Extra ref: 12.1 of Bishop 2006.)



https://www.statlearning.com/
https://ebookcentral.proquest.com/lib/ncsu/reader.action?docID=3339490
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Unsupervised Learning

@ Def: Learns from a set of unlabeled data to discover interesting
patterns.

+ Visualize the data in an informative way.

+ Discover subgroups among observations/variables.

¢ Examples:
+ Movies grouped by ratings and behavioral data from viewers.
+ Groups of shoppers characterized by browsing & purchasing histories.
+ Subgroups of breast cancer patients grouped by gene expressions.

+ Tweets grouped by latent topics inferred from the use of words.

27
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PCA: Two Equivalent Goals

¢ Goals, i.e., cost/loss/objective functions, of PCA:

(1) maximize variance, and (2) minimize error.
Y A

Ad Spending

Population

(James, Witten, Hastie, & Tibshirani, 2013) 28
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PCA Objective I: Maximizing Variance

¢ Maximize variance: Project data onto a lower-dimensional subspace
while maximizing the variance of the projected data.

& Details:

ug ”111 H =1 Unit vector
R A o . .
Zil = Uq X Projection of X; along direction u;

¢ Naming:
+ z;,—score, coefficient, transformed coefficient, weight, projected values, ...

+ u;—loading, (1Y) principal component vector, ...
29
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mn
1 ——2 . Sample variance measures spread
(Zﬂ — 21) :

n—1 of the projected data along u;.

1=1
—def 1 n .
where Z1 = = > .~ ; 21 is the sample mean.

Spread =

Matrix form for calculating S:

n
= Y (ul'xi - u’x)”
1=1

n
=LY ul (- %) (x - %) w
i=1 fa

vouo  dledn mogtTix
=1

S, sample covariance (Assuming all x; are already centered,

i.e,X; < X; — X, Vi) 0
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3

Source code:

plot(X_c(1, :), X_c(2, :), 'ko’); ol

xlabel('x_1"); ylabel('x_2"); 1 °© o
axis([-3 3 -3 3]); axis equal; ?

hold on; <0 P

S =(Xc*Xc") / (n-1); _ o

Output: I B T R
X c =

-0.9229 1.0864 -1.3466 2.0556 -0.5967 -0.2758
-0.0789 1.1515 -1.6695 1.0773 -1.1415 0.6611

1.7006 1.2570

1.2570 1.4040 .
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maximize, u’Su subject to ||u|| =1

Use Lagrange, we have J(u) = u? Su + ) (1 —u u) Taking the gradient V (1.e.,

a vector of partial derivatives, [8%1, ..., 5|7 for J(u) and set it to the O vector
P

VaJ(u) =287u + \(—2u) = 0,

we obtain St = \i. Left multiply G’ to both sides, we have

The cost function is then simplified to finding the largest A, or largest eigenvalue of S.
u is the eigenvector which corresponds to the largest eigenvalue.

Vector calculus cheat sheet (p. 52|—527)2 https://www.cs.cmu.edu/~epxing/Class/ 1070 | -08s/recitation/mc.pdf 32



https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf
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3

Source code:

[U, Lambda] = eig(S);
eigenvalues = diag(Lambda); 1 °© o

2_

for k = 1 : size(U, 2) o "’
u=uU(:, k); i+ PCl1./,
len = sgrt(eigenvalues(k)); °
plot([@ len*u(1)], [0 len*u(2)], N

‘LineWidth", 2, 'color', color_arr(k)); ..

end S x

Output:

U = Lambda =
0.6644 -0.7474 0.2865 )
-0.7474 -0.6644 0 2.8181

PC2 PC1 Ay A .
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PCA: Forward Transform and Reconstruction

Analysis/Transform: Analysis example:
Also known as Karhunen—Loeve Transform (KLT) —1.58 . —0.75 0.66 s 1.09
- - T 1 [ —0.14| [-0.66 —0.75 1.15
Zil .___1_1]____ —_—— ~— e —
29 ug Z; UT X;
: = [~ 7" T T [ X
s - .
| Zin | u, | Synthesis example:
- 1.09] _ [-0.75 0.66 | [~1.58
z; = U" % {1.15] - {—0.66 —0.75] | —0.14
N\ /s L. ~ 7 N ~ >
. . X; U Z;
Synthesis/Reconstruction:
_ 158 —0.75 014 0.66
[ I Zi1 n T -0.66 T =0.75
_ R l l -
X; = UZZ — U1y "~ Un : _ Zzikuk _ 1.19 4+ —0.09 Contribution from
I I Zin k=1 -~ 1.04 0.11 PC2 is small

34
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Reconstruction Using Dominant PCs R
mean PCI Recon w/ 2 PCs  Recon w/ |0 PCs

El =

Recon w/ 100 PCs Recon w/ 506 PCs

3

* Each image of 50x50 is stacked into a column vector of length 2,500.

* Sample covariance matrix will be of size 2,500x2,500.

* Eigenvectors of length 2,500 are reshaped to 50x50 for display. May call
them “eigen-images.” -
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PCA Objective 2: Minimizing Error

¢ Approximate the data points using a presentation in a lower-
dimensional subspace.

®
e | . °
— ° .
: LY %° } :
° [
.
= [ ]
=
n
% s T o °
2 . ;
3 “ .
e ) . ©
2 4 . ® .
E S 7] *e ° ]
o ° .
o o % ° [ ]
S ° ‘.. ® ®
8 ..... e® L ¢
o ® °
1 ’ °
os®
¢ . "
L] o 0 g
< o ©®
.
T T T T T
-1.0 -0.5 0.0 0.5 1.0

First principal component

(James, Witten, Hastie, & Tibshirani, 2013) 36
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Assume x;’s are centered, i.e., X; «— X; — X, Vi. (Optional)

J(ui, zi1) Z Ix; =z ||* = = Z — zinug) ' (% — zpuy)

1 n
= — Z(X?Xi — 221'1)(?111 + 27;2111’{111)
i=1
Y 1 T T 5 T
J = —(—QXJ- u; +2z;3u;u;) = 0= 21 =u xj
8Zj1 n N— .
=1 Zj1=%j41
1 n
J = — Z(X?X,,; — 222 +27)  (skip the hat of z;; for simplicity)
n
i=1

mm J = mAax E 22, = maximize the spread!

Same as the Obijective |

37
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PCA’s Caveat: Proper Standardization May be Needed

T [ ] .
¢ If coordinates of X; = [xl-l, ...,xl-p] have different units, maximal
variance direction may be biased toward x;; with largest magnitude.

100 | 4
90 =
80|
70
60
50

*  Why is standardization needed in
this case!?

* Do the hand-written digit and face
recognition need standardization?

40

(Bishop 2006)

€ When proper standardization of coordinate/variable/feature is needed:

Tij — T , Standardize along the feature/x-
J=1...,p direction rather than the y-direction

b}
\/% Z?:l (m’ij _ CE‘7')2 of data matrix X.

38
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PCA: Applications and Beyond

¢ PCA is lightweight yet powerful. Should be tried before applying more
sophisticated tools.

¢ Modern replacement of PCA:
+ Data visualization: t-SNE, UMAP.
+ Dimensionality reduction: Nonlinear dimensionality reduction algorithms.

+ Lossy data compression: Data-independent transforms tailored for data
following certain statistical behaviors.

+ Feature extraction: Topic modeling (unsupervised), CNN self-learned
feature extraction (supervised).

39
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Linear Regression and Prediction
(Supervised Learning)

Learning objectives
o Interpret regression problem mathematically and geometrically

o Apply linear regression to learning problems without overfit

(A comprehensive treatment of basic linear regression can be found in Scheffe Chl, available
on the library’s course reserves.)



https://www.dropbox.com/s/tourfs269cm8xon/scheffe_ch1.pdf?dl=0
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Supervised Learning: Classification

Goal of classification:
Assign a categorical/
qualitative label, or a

. .Il. x ';.". .". 3 A : .‘ : - — I-: = ;:“. L] L]
mite container ship motor scooter eopard CIaSS, to an g|ven |nput.
1 mite container ship motor scooter ledpard
= black widow Iif:_l::_rat w-l;ar; F_J Chjagl:a::
cockroach amphibian mope eeta . R .
|' star'f’.i'.‘. aritiing plattorm et sé';’fplf:.'.’ :Zi' € Given an Image, It

T W R ‘ﬁr’&\& returns the class label.
: _.7’ = 25‘: p  Optionally, provide a
| ¥ a\,_ “confidence score.”
grille mushroom cherry aagascar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012. 41
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Supervised Learning: Regression

Goal of regression:
Assign a number to
each input.

Loosely, ML people also
call it “label.”

€ Given a facial image,
it returns the 2D
location for each key
point of the face.

Yi Sun, Xiaogang Wang, Xiaoou Tang, Deep Convolutional Network Cascade for Facial Point Detection, CVPR, 2013. 42
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Supervised Learning: Definition

¢ Terminologies:

+ Training data: Dy = { (x4, yi) }iq
+ Test data: Die = {(xi, i) ?:Jrﬁl
+ Learned model: y = f(x)

¢ Goal: Given a set of training data Dy, as the inputs, we would like
to compute a learned model ¥ = f(x) such that it can generate
accurate predicted outputs

@,,;:f(Xi), r=n+1,....n+m,

from a set of new inputs {x;}[7"*; of the test data D, whose

n+m

labels {y;};=,\ have never been taken into account when the
model is computed. 43
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Quantifying the Accuracy of Prediction

¢ Quantify the accuracy of the learned model by a loss function (or
cost/objective function), based on predicted output, y;, and the true

output, y;, namely, L(y,y).

¢ A typical choice for the loss function for a continuous-valued
output is the mean squared error:

1 n-+m
L(y,y) = — > (G — i)’
1=n—+1

¢ Key ML assumption: Test data shouldn’t have been seen before (at
the training stage), or there will be overfit.

44
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Simplest Example: Linear Model

Data: (z;,Y;), i=1,...,n
random E[e;] = 0

Model: Y; = go + /81337; +7?z
/ intercept noise: measurement noise, biological variation

dependent var.  independent var./predictor
/observation

0 = [By, $1]7 is the parameter vector/weights.

linear combination of unknowns 3y and 34
ElY;] = i= . .
Yil = Bo+ P with known coefficient 1 and z;.

45
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Linear Model in Matrix-Vector Form

&
—
M
'—l

_ |Bo _
’ ﬁ—[51]2x1’ .

d nx?2 L ""dnxl

>
I
P4
I

- dnxl

1
L'_I
1
Y =X3+e “Matrix—vector form”

data matrix

46
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Linear Model with Multiple Predictors / Features

¢ Multiple (Linear) Regression Model:

p
Y, = E ri;jB; +ei, t1=1,...,n.
J=1

Yx1 = XnXp/Bpxl T €enx1
T— vector of random elements

47
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Linear Regression Example

1/;;:/80+/61£C¢1+;82£U@'2+€q;, 1=1,...,50

l/i . grade Yl 1 T11 T12 ﬁO €1
x;1 : time spent on hw : = | : : Br |+ ¢
T;o : time spent on review | Ys0 | 1 @501 Ts02 B2 | €50 _

How to estimate model parameters (3, f1,and [,? Least-Squares!

48
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Least-Squares for Parameter Estimation
Problem Setup: Y = X8 + e, where X = [£,,--- ,£,].

Estimate 3 suchthat  J(B3) = ||Y — X,8||2 is minimized.

or J(3) Z meﬁj
1=1

This is called “least-squares.”

49
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Least-Squares via Vector Calculus

Recall: J(B3) = |[|[Y — X34

Method 1: VgJ(3) = 0,

XTy = XTXj3 XT(Y -XB)=0

(Error orthogonal to data)

Normal Equation (N.E.)

Vector calculus cheat sheet (p. 521-527): https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf 50



https://www.cs.cmu.edu/~epxing/Class/10701-08s/recitation/mc.pdf
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Least-Squares via Partial Differentiation (optional)

If linear algebra is not used, the derivation can be much more involved:

Method 2 : Recall: J(3) =37, (Yi D 37ij/6j)2

ﬂ_zn:g(y._zp:x.ﬂ.)i(_(...+x. 3 +))
86k_ 1 13 Mg 86k ik Mk

?,:1 le ~ vy

Vo

—Lik

o ’53:33'

. X7y — XTx3 | Normal Equation (N.E.)
L J

~

z- B=X"X)"'X"Y
where XY = [Z?:l ﬂfikYi}pxl , XX = [Z?:l %3%’9]

XX = [ i1 (Z?zl ﬂfimk)ﬁj}

pPXxXp

px1 51



NC STATE UNIVERSITY

Geometric Interpretation of Least-Squares (LS)

@ The LS procedure finds a vector B in the column (vector) space of
X, i.e.,, C(X) = {Xb,b € RP} such that

+ Y = X is as close as possible to y, or
+(Y-Y) LeX).

(Y —Y)LC(X)
«— (Y -Y)LXb, VbeR?
= (Y-Y)=0, j=1,,p
= [€,..,8) (Y -XB)=0
— X'y =X"Xz3

Aim (ZZ()O) —r < ’F 592
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Properties of Least-Square Estimate

Ifrank(X)2r=p O| B =(XTX)"'XTY | is unique soluntion.

E[3] = E[(XTX)"1XTY] = (XTX)~ X7 (X3) = B3 (unbiased)

QY =XB=XX"X)"'XTY =HY

H : “hat” matrix, or “orthogonal projector.” H" = H. Why?
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Ex: Linear Model for Learning and Prediction

¢ Training data (3 data points / a random sample of size 3):
+ Feature/predictor |: (2, I, ). Feature/predictor 2:(l,2, ).
+ Labels: (I, I, 1).

¢ Test data (2 data points / a random sample of size 2):
+ Feature I:(1.2, 1.8). Feature 2:(0.9, 1.3).
+ Labels: (0.9, 0.8).

¢ Tasks:
a) Learn a linear model without intercept.
b) Using drawing to illustrate the data and learned model.

c) Evaluate the mean squared errors (MSEs) of training and testing.
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Y=XB+e (X,Y): gzs:ing

a) X =

— = B
—_ DN =
Il
e
—_
1

Estimated/ ) 1
trained model (3 = (XTX) X1y

parameters:

Predicted output based on training data:

. 12

4 1

=)
8

(N

~

Y =X3 = =Y, or

— b

1
1
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3
C Training error A\ 2 - .
) - SN (i —xTB) =LY = Y2 = 5| Y - XB|?

(in MSE):
12 —11
12 —11
8 —11

Testing crror Xtest — L2 09 ] Ytest — [ 09 ] (XtestaYtest) : teStlng
(in MSE): L. data

2

=3 - qz(1+1+9) =35 -7 =003

wl

1
3 112

5
AN\ 2 . .
% Z (yi - X? ) — %“Ytest — Ytest||2 = %HYtest - X‘-testﬁu2

DI =4l

2

2
1 —0.01

-2
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Convolutional Neural Network (CNN)

Learning objectives
o Describe the structure of CNN

o Build and train simple CNNs using a deep learning package

(Ref: Ch 9 of Goodfellow et al. 2016)
Some slides were adapted from Stanford’s CS23In by Fei-Fei Li et al.: http://cs23 | n.stanford.edu/



https://www.deeplearningbook.org/
http://cs231n.stanford.edu/
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Convolutional Neural Network (CNN)

The single most important technology that fueled the rapid
development of deep learning and big data in the past decade.

C3: f. maps 16@10x10

INPUT 81@ 2fg§t21ge maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer
6@14x1 I 120 e tayer QUTPUT

o

T ___.

DN

FuII conljlecnon

Convolutions Subsampling Convolutions Subsampllng Full connectlon
& nonlinear or pooling & nonlinear  or pooling
activation activation

LeCun, Bottou, Bengio, Haffner, “Gradient-Based Learning Applied to Document Recognition,” Proc. IEEE, 1998. 58
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Why is Deep Learning so Successful?

Improved model: convolutional layer, more layers (“deep”), simpler
activation (i.e., ReLU), skip/residual connection (i.e., ResNet), attention
(i.e., Transformer)

Big data: huge dataset, transfer learning
Powerful computation: graphical processing units (GPUs)

Example of blg data: ImageNet (22K categorles |I5M |mages)

Deng, Dong, Socher, Li, Li & Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” IEEE CVPR, 2009. 99



The Imcuge CIassnflcahon Chollenge

1,000 object classes
1,431,167 images

2010 2012 2013 2014 2014 2015 2016 2017

Lin et al Sanchez & Krizhevsky et al Zeiler & Simonyan& Szegedvetal Heetal Shao et al Huetal Russakovsky
Perronnin Fergus  Zisserman (GoogleNet) (ResNet) (SENet) etal

(Fei-Fei Li et al., CS231n) o _ e VGG
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Linear Model to Neural Network
Re cal @inw madel v/ multipl  predictrs / fastuses /riputs
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Fully-Connected Layer for ID Signal

() (D7 .

A1 [e e pr X, |y
2)| _ lw @ @ | |y, .

_Yﬂ[__ N o 3.()
_%@7 ‘ g:ﬁ }3@ T Fg)_ e | . ] ]d_(%)

~— — N~ B

Latges- dence weight lyger inpt, (xf

OUt Pt pratii el

Y R Re T
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Fully-Connected Layer for RGB Image

32x32x3 iImage -> stretch to 3072 x 1

input activation
Wx
1 10 x 3072 1o
3072 X 10
weights
1 number:

the result of taking a product
between a row of W and the input
(a 3072-dimensional dot product)

(Fei-Fei Li et al., CS231n) 63
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Convolutional Layer for 1D
X
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Convolutional Layer for 2D Matrix/Image

i)

Mg

Xz

g HH-

‘ /4| Va _ Y2 ]
* el &l 2D Convolution

P Multiple color

L — channels need

WO multiple filter masks
! XR”\)K* XG_*NGEJr XB*WB
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Convolutional Layer for RGB Image

32x32x3 image

ox5x3 filter
32 L/
I Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”

32

(Fei-Fei Li et al., CS231n) 66



NC STATE UNIVERSITY

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wlz + b

1 number:

(Fei-Fei Li et al., CS231n) 67
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A closer look at spatial dimensions:

activation map

__— 32x32x3 image

5x5x3 filter
=

=0 i
convolve (slide) over all

spatial locations

32 28

(Fei-Fei Li et al., CS231n) 68
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For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

32

Six 5x5x3 filters 28

Convolution Layer

32 28
3 6

We stack these up to get a “new image” of size 28x28x6!

(Fei-Fei Li et al., CS231n) 69
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Building Block for Modern CNN

)

(o Actiuechim
> ——>| Functim >
J‘a’j{r (ejﬂmemtwi,se)

=
Jayed

(Rectified Linear Unit) / g(rx)_

kel U AVW( . X)
(}’hbdem,)

Logistic T
(Pnbr ﬁe/mdm)

\E’““ ;X;:: E/X?’jb(]—l
Ao Pﬂ)lmﬁ
o (xi1)= pan ( §oug )
Pueroge Pwt‘uﬂ |
%<%%3§> f{“ L%é
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CNN is composed of a sequence of convolutional layers,
interspersed with activation functions (ReLU, in most cases).

32 28 o4
CONV, CONV, CONV,
RelU RelLU RelU
2'95' g e.g. 10
XX 5x5x6
32 filters 28 filtors 24
3 6 10

(Fei-Fei Li et al., CS231n) 71
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Low-level
features

VGG-16 Convl

(Fei-Fei Li et al., CS231n)

Visualization of VGG-16 by Lane Mcintosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

[Zeiler and Fergus 2013]

Linearly
separable
classifier

Mid-level
features

High-level
features

e,

I ¢



IMAGENET Large Scale Visual Recognition Challenge

Year 2010 Year 2012 Year 2014 Year 2015

NEC-UIUC SuperVision GoogleNet VGG MSRA

T

J

Image

conv-54

@ Pooling
@) Convolution
Softmax

@ Other

conv-64

maxpool

\.

i

conv-128

Dense descriptor grid:
HOG, LBP

comv-128

maxpool

v

conv-256
conv-256

Coding: local coordinate,
super-vector

maxpool

¥ conv-512

conv-512

Pooling, SPM

maxpool

D

conv-512

conv-512

apgy  SHeed
ey
*

Linear SWM maxpool

N

apmE

fc-4096
fc-4096
fc-1000

3
I
g | meuss)
L |
4
L LY
N LAY
L) ¥} LT
£ A T
[T 1

ooy
=
=g

softmax

[Lin CVPR 2011] [Krizhevsky NIFS 201 2]

[Szegedy arxiv 2014] [Simonyan arxiv 2014] [He ICCV 2015]
(Fei-Fei Li etal., CS231n) /3
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One Last Thing: When Output is Categorical

P o e PV ]

¢ A softmax layer is needed:

& Softmax function:

FZL .2 [53}:—1;;!
0= £ -
Zepzc} : ga.?/o-eeuﬂ)f:ﬁ]:\rzk;] ’rx]
}:4 O E’k’.—lx?
¢ Ex
=1 )
K=2 0 =g 7 Whan g very e
e’ t e
| 2y 22 [ooda { O =0
= M F@'_E’LFJ U= |

Winner takes all!

74



NC STATE UNIVERSITY

Machine Learning (ML) and Data Science (DS)

¢ Follow-up machine learning / data science courses:
+ ECE 492-45 Intro to Machine Learning
» ECE 542 Neural Nets and Intro to Deep Learning
» ECE 592-61 Data Science
» ECE 759 Pattern Recognition and Machine Learning
» ECE 763 Computer Vision
» ECE 792-41 Statistical Foundations for Signal Processing & Machine Learning

+ Any courses/videos on YouTube, Coursera, etc.
4 Data science competitions: kaggle.com

€ Programming languages for ML/DS: Python, R, Matlab
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