Topics on Machine Learning

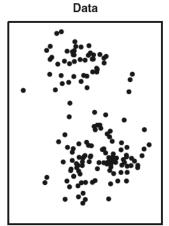
ECE 301 Linear Systems

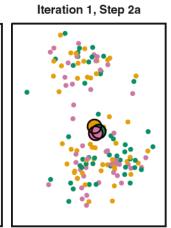
Chau-Wai Wong, NC State University, Spring 2021

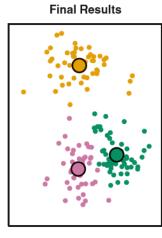
Machine Learning: An Introduction

(James, Witten, Hastie, & Tibshirani, 2013)

- Unsupervised learning:
 - → Learns from a set of unlabeled data to discover patterns, without human supervision.
 - ★ We'll cover principal component analysis (PCA).







- ◆ Supervised learning:
 - → Learns an input—output mapping based on labeled data.
 - We'll cover linear regression and neural networks.

Strawberry Bathing cap

(Li and Russakovsky, 2013)

Machine Learning Topics and Learning Objectives

- ◆ Topic I: Linear algebra
 - ★ Explain linear algebra concepts such as linear independence, vector space, and orthogonal basis
 - → Conduct eigendecomposition for symmetric matrices using Matlab
- Topic 2: Principal component analysis (unsupervised learning)
 - ★ Explain the two equivalent goals of PCA
 - → Implement the PCA algorithm and visualize the results
- Topic 3: Linear regression and prediction (supervised learning)
 - → Interpret regression problem mathematically and geometrically
 - → Apply linear regression to learning problems without overfit
- ◆ Topic 4: Convolutional neural network (CNN)
 - → Describe the structure of CNN
 - → Build and train simple CNNs using a deep learning package

Linear Algebra

Learning objectives

- Explain linear algebra concepts such as linear independence, vector space, and orthogonal basis
- Conduct eigendecomposition for symmetric matrices using Matlab
 (Refer to ECE 220's textbook for a review on vector and matrix. A comprehensive treatment of linear algebra can be found in Scheffe's appendices, available on the library's course reserves.)

Linear Algebra Review: Vector

- Vector: an <u>ordered</u> n-tuple.

Row vector:
$$\mathbf{x} = \begin{bmatrix} x_1, & x_2, & \dots, & x_n \end{bmatrix}$$

Column vector: $\mathbf{x} = \begin{bmatrix} x_1, & x_2, & \dots, & x_n \end{bmatrix}^T$
(Assume all vectors are column from now on.)

- Vector properties:

$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$
 (commutative)
 $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$ (associative)
 $c[x_1, \dots, x_n] = [cx_1, \dots, cx_n]$ (scaling)

- Norm/length: $||\mathbf{x}|| = (\mathbf{x}^T \mathbf{x})^{\frac{1}{2}}$, e.g., $\mathbf{x} = \begin{bmatrix} 3, 4 \end{bmatrix}^T$, $||\mathbf{x}|| = 5$.

Linear Algebra Review: Vector (cont'd)

- Inner product of x and y:

$$\mathbf{x}^T \mathbf{y} = [x_1, \cdots, x_n] \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i = \mathbf{y}^T \mathbf{x}.$$

-
$$\mathbf{x}^T \mathbf{y} = ||\mathbf{x}|| \cdot ||\mathbf{y}|| \cos \theta_{\mathbf{x}, \mathbf{y}}$$

$$\mathbf{x}^{T}\mathbf{y} = ||\mathbf{x}|| \cdot ||\mathbf{y}|| \cos \theta_{\mathbf{x}, \mathbf{y}}$$

$$\mathbf{Ex: x} = [1, 0], \mathbf{y} = [1, 1]$$

$$\cos \theta_{\mathbf{x}, \mathbf{y}} = \frac{\mathbf{x}^{T}\mathbf{y}}{||\mathbf{x}|| ||\mathbf{y}||} = \frac{1 \cdot 1 + 0 \cdot 1}{\sqrt{1^{2} + 0^{2}} \cdot \sqrt{1^{2} + 1^{2}}} = \frac{\sqrt{2}}{2}$$

$$\Rightarrow \theta_{\mathbf{x}, \mathbf{y}} = 45^{\circ}$$

- Def: **x** and **y** are orthogonal if $\mathbf{x}^T \mathbf{y} = 0$.
- Remark: When $\mathbf{x}^T \mathbf{y} = 0$, $\cos^{-1} \left(\frac{0}{||\mathbf{x}|| ||\mathbf{y}||} \right) = \frac{k\pi}{2}$.

Linear Algebra Review: Matrix

- Matrix:
$$\mathbf{A} = [a_{kl}] = \begin{bmatrix} a_{11} & \cdots & a_{1N} \\ a_{21} & \cdots & a_{2N} \\ \vdots & \ddots & \vdots \\ a_{M1} & \cdots & a_{MN} \end{bmatrix} \in \mathbb{R}^{M \times N}, M \text{ rows, } N \text{ columns.}$$

- Addition: $\mathbf{A} + \mathbf{B} = [a_{kl} + b_{kl}] = \mathbf{B} + \mathbf{A}$
- Scaling: $c\mathbf{A} = \begin{bmatrix} ca_{kl} \end{bmatrix}$ Ex: $2 \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$
- Transpose "T": $\mathbf{A}^T = [a_{kl}]^T = [a_{lk}]$ Ex: $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & 4 \\ 1 & 6 \end{bmatrix}$
- Special matrices: $\mathbf{0}_{M\times N} = [0]_{M\times N}, \ \mathbb{1}_{M\times N} = [1]_{M\times N},$

$$\mathbf{I}_M = egin{bmatrix} 1 & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & 1 \end{bmatrix} = \mathrm{diag}(\mathrm{ones}(M,1)).$$

Linear Algebra Review: Matrix (cont'd)

- Matrix Multiplication: $\mathbf{C} = \mathbf{AB}$, where $c_{kl} = \sum_{q=1}^{N} a_{kq} b_{ql} = \mathbf{A}(k,:)\mathbf{B}(:,l)$



Ex:
$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 3+5 & 4+6 \\ -3+5 & -4+6 \end{bmatrix} = \begin{bmatrix} 8 & 10 \\ 2 & 2 \end{bmatrix}$$

- Def: $A^{-1} = B$ if ① A is square, and ② AB = I = BA.

Linear Algebra Review: Matrix (cont'd)

- For 2-by-2 matrices:
$$\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}^T = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Ex:
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

$$\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b} \Longrightarrow \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

Motivation: Linear Algebra for Discrete Convolution

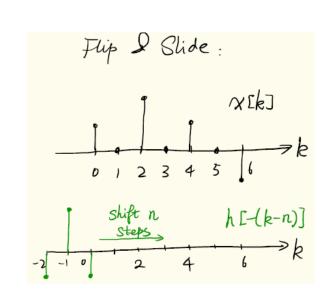
Ex:
$$x[n] = \{1, 0, 2, 0, 1, 0, -1\}, \ h[n] = \{-1, 2, -1\}. \ y[n] = x[n] * h[n] = ?$$

$$x[0] \quad \text{length} = 7 \quad h[0] \text{ length} = 3 \quad \text{length} = ?$$

Matrix-vector form:

$$\begin{bmatrix} -1\\2\\-3\\4\\-3\\2\\0\\-2\\1 \end{bmatrix} = \begin{bmatrix} -1&&\cdots&&&0\\2&-1&&&&\\&-1&2&-1&&&\\&&&-1&2&-1&&\\&&&&&-1&2&-1\\&&&&&&-1&2\\0&&&&&&&-1 \end{bmatrix} \begin{bmatrix} 1\\0\\2\\0\\1\\0\\-1 \end{bmatrix}$$

$$\mathbf{H} \in \mathbb{R}^{9 \times 7} \qquad \mathbf{x} \in \mathbb{R}^{7}$$



Linear Independence of a Set of Vectors

- Def: Given $\{\mathbf v_1,\dots,\mathbf v_n\}$. For $\alpha_1\mathbf v_1+\dots+\alpha_n\mathbf v_n=\mathbf 0$, If $\alpha_i=0, \forall i$, then "linearly independent;" If not all $\alpha_i=0$, then "linearly dependent."
- lacktriangle For "linearly dependent" case (when $\alpha_1 \neq 0$), we may write:

$$\mathbf{v}_1 = \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n$$
 Why?

• Ex: $\mathbf{v}_1 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$, $\mathbf{v}_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$.

$$\alpha_1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \mathbf{0} \qquad \Rightarrow \begin{cases} \begin{array}{c} \alpha_1 + \alpha_2 = 0 \\ 2\alpha_1 + 0 = 0 \\ \alpha_1 + \alpha_2 = 0 \end{array} \Rightarrow \begin{cases} \begin{array}{c} \alpha_1 = 0 \\ \alpha_2 = 0 \end{array} \Rightarrow \text{linearly independent} \end{cases}$$

Linear Independence of a Set of Vectors (cont'd)

• Ex: $\mathbf{v}_1 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$, $\mathbf{v}_4 = \begin{bmatrix} -2 & -4 & -2 \end{bmatrix}^T$.

 $\mathbf{v}_4 = -2\mathbf{v}_1 \Rightarrow \text{linearly dependent}$

• Ex: $\mathbf{v}_1 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$, $\mathbf{v}_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$, $\mathbf{v}_3 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$.

 $\mathbf{v}_1 = \mathbf{v}_2 + 2\mathbf{v}_3 \Rightarrow \text{linearly dependent}$

Vector Space

♦ Def: Vector space: A set, V, of all vectors that are linear combination of $\{\mathbf{v}_i\}_{i=1}^n$, i.e.,

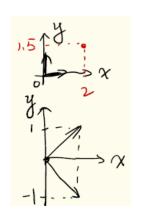
$$V = \left\{ \mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i, \ \alpha_i \in \mathbb{R} \right\}.$$

 \mathbf{v}_i 's are said to span the vector space, i.e., $V = \operatorname{span}\{\mathbf{v}_i, \dots, \mathbf{v}_n\}$.

♦ Ex:

$$V^{(1)} = \left\{ \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \alpha_i \in \mathbb{R} \right\}$$

$$V^{(2)} = \left\{ r_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + r_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}, r_i \in \mathbb{R} \right\}$$



Basis for Vector Space

- lacktriangle Def: A <u>basis</u> for V is a set of <u>linearly independent</u> vectors that span V.
- **♦** Ex:

$$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \text{ yes } \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \text{ yes } \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} \text{ no }$$

Dimension of Vector Space

- lacktriangle Def: The <u>dimension</u> of vector space V is the number of vectors in any/a basis of V.
- Column/row rank: The dimension of column/row vector space, respectively.
- Ex: What's the column rank of matrix

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}?$$

It's just another way to ask: what's the dimension of vector space

$$V = \left\{ \mathbf{v} = \alpha_1 \middle| \begin{array}{c} 1 \\ 2 \\ 1 \end{array} \middle| + \alpha_2 \middle| \begin{array}{c} 1 \\ 0 \\ 1 \end{array} \middle| + \alpha_3 \middle| \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \middle|, \ \alpha_i \in \mathbb{R} \right\}?$$

Dimension of Vector Space (cont'd)

◆ Approach I: By observation, we notice that any two pairs of vectors spanned *V* are linearly independent. Hence, we can immediate write out at least three bases:

$$\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\} \quad \text{or} \quad \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \quad \text{or} \quad \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

Hence, the column rank of X or dimension of vector space V is 2.

lacktriangle Approach 2: Define the three vectors to be v_1, v_2, v_3 , respectively.

$$V = \left\{ \mathbf{v} = \alpha_1(\mathbf{v}_2 + 2\mathbf{v}_3) + \alpha_2\mathbf{v}_2 + \alpha_3\mathbf{v}_3 \right\}$$
$$= \left\{ \mathbf{v} = (\alpha_1 + \alpha_2)\mathbf{v}_2 + (2\alpha_1 + \alpha_3)\mathbf{v}_3 \right\}.$$

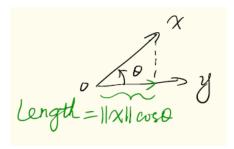
 $\mathbf{v}_2 \perp \mathbf{v}_3 \Rightarrow$ they are linearly independent. So the dim/rank is 2.

Projection of a Vector on a Unit Vector

- ◆ Project a vector **x** on a unit vector **u**:
 - + Projection length is $\mathbf{u}^T \mathbf{x}$. (a number, with sign)
 - + Projected vector is $(\mathbf{u}^T \mathbf{x})\mathbf{u}$. (a scaled vector along \mathbf{u})
- Proof (projection length):

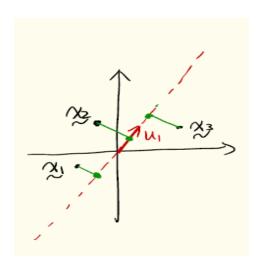
$$\mathbf{x}^{T}\mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta, \quad \text{let } \mathbf{u} = \mathbf{y}/\|\mathbf{y}\|.$$

$$\mathbf{x}^T \left(\frac{\mathbf{y}}{\|\mathbf{y}\|} \right) = \|\mathbf{x}\| \cos \theta = \mathbf{u}^T \mathbf{x}.$$



Projection of a Vector on a Unit Vector

◆ Example:



$$\mathbf{u}_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \end{bmatrix}^{T}$$

$$\mathbf{x}_{1} = \begin{bmatrix} -1, -\frac{1}{2} \end{bmatrix}^{T}$$

$$\mathbf{x}_{2} = \begin{bmatrix} -\frac{1}{2}, 1 \end{bmatrix}^{T}$$

$$\mathbf{x}_{3} = \begin{bmatrix} 2, 1 \end{bmatrix}^{T}$$

$$\mathbf{z}_{11} = \mathbf{u}_{1}^{T} \mathbf{x}_{1} = \frac{\sqrt{2}}{2} \cdot \left(-\frac{3}{2} \right)$$

$$\mathbf{z}_{21} = \frac{\sqrt{2}}{4}$$

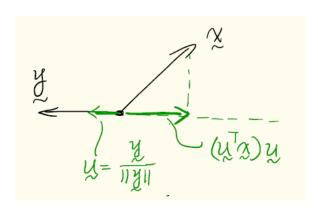
$$\mathbf{z}_{31} = \frac{3}{2}\sqrt{2}$$

Projection One Vector on Another

- ◆ Project a vector **x** on a vector **y**:
 - + Projection length is $y^T x/||y||$. (a number, with sign)
 - + Projected vector is $(y^Tx)y/||y||^2$. (a scaled vector along y)
- Proof (projected vector):

Projection of \mathbf{x} onto $\mathbf{y} = (\mathbf{u}^T \mathbf{x}) \mathbf{u}$

$$= \left[\left(\frac{\mathbf{y}}{\|\mathbf{y}\|} \right)^T \mathbf{x} \right] \frac{\mathbf{y}}{\|\mathbf{y}\|} = \left(\mathbf{y}^T \mathbf{x} \right) \mathbf{y} / \left\| \mathbf{y} \right\|^2.$$



Orthonormal Basis

- lacktriangle Def: A basis $\{a_1, \ldots, a_r\}$ for V is called orthonormal if r vectors are pairwise orthogonal and have unit norm.
- ◆ Ex: Given a vector space

$$V = \left\{ \mathbf{v} = \alpha_1 \middle| \begin{array}{c|c} 1 \\ 2 \\ 1 \end{array} \middle| + \alpha_2 \middle| \begin{array}{c|c} 1 \\ 0 \\ 1 \end{array} \middle| + \alpha_3 \middle| \begin{array}{c|c} 0 \\ 1 \\ 0 \end{array} \middle|, \ \alpha_i \in \mathbb{R} \right\}$$

$$\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

Basis, but Basis, but nonorthonormal. nonorthonormal.

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

Basis w/ orthogonal vectors. Can normalize $[1 \ 0 \ 1]^T$ to obtain an orthonormal basis.

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$$

Not even a basis. Why???

Orthogonal Matrix

- Def: A square matrix P is orthogonal if and only if its columns (or rows) constitute an orthonormal basis.
- Properties:

$$+$$
 $\mathbf{P}^{\mathrm{T}}\mathbf{P} = \mathbf{P}\mathbf{P}^{\mathrm{T}} = \mathbf{I}$

$$+$$
 $\mathbf{P}^{-1} = \mathbf{P}^{\mathrm{T}}$

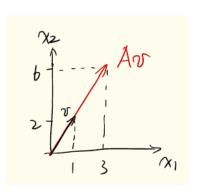
$$\mathbf{P}^T \mathbf{P} = \begin{bmatrix} -\mathbf{v}_1^T \\ -\mathbf{v}_2^T \\ -\mathbf{v}_3^T \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1^T \mathbf{v}_1 & 0 & 0 \\ 0 & \mathbf{v}_2^T \mathbf{v}_2 & 0 \\ 0 & 0 & \mathbf{v}_3^T \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}$$

$$\mathbf{P}\mathbf{P}^{T} = \begin{bmatrix} 0 + \left(\frac{1}{\sqrt{2}}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} & 0 & \frac{1}{2} - \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I} \quad \text{(Direct evaluation)}$$

Eigenvector and Eigenvalue

- Def: Let A be an n-by-n matrix. A nonzero vector v is called an eigenvector of A if $Av = \lambda v$. Here, λ is called a eigenvalue of A and v is eigenvector corresponding to eigenvalue λ .
- Prefix "eigen" means "characteristic."
- lacktriangle Physical interpretation: Operator A is invariant to v, which means that A acts on v can only change its length but not the direction.
- **E**X:

Let
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
Since $\mathbf{A}\mathbf{v} = \begin{bmatrix} 3 \cdot 1 + 0 \cdot 2 \\ 8 \cdot 1 - 1 \cdot 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{v}$, the eigenvalue $\lambda = 3$.



Eigendecomposition for Symmetric Matrices

- Def: A square matrix A is symmetric if $A = A^T$.
- lacktriangle Thm: A p-by-p symmetric matrix **R** can be diagonalized by an orthogonal matrix $V = [v_1, ..., v_p]$. The following statements are equivalent:
- 1. $\mathbf{R} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$

1.
$$\mathbf{R} = \mathbf{V}\Lambda\mathbf{V}^T$$

$$= \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_p \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_p \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_p \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T \\ -\frac{\mathbf{v}_1^T}{\mathbf{v}_p} \end{bmatrix}$$
3. $\mathbf{R}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad i = 1, \dots, p.$

2.
$$\mathbf{RV} = \mathbf{V}\boldsymbol{\Lambda} = [\mathbf{v}_1 \cdots \mathbf{v}_p] \begin{bmatrix} \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_p \end{bmatrix}$$

3.
$$\mathbf{R}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad i = 1, \dots, p$$

$$egin{aligned} &= \left[\lambda_1 \mathbf{v}_1 \cdots \lambda_p \mathbf{v}_p
ight] egin{bmatrix} \mathbf{v}_1^T \ dots \ \mathbf{v}_p^T \end{bmatrix} \ &= \sum_{i=1}^p \lambda_i \mathbf{v}_i \mathbf{v}_i^T \end{aligned}$$

Eigendecomposition Using Matlab_

- Ex: Use Matlab to decompose matrix $\mathbf{A} = \begin{bmatrix} 1 & 4 & 5 \\ 4 & -3 & 0 \\ 5 & 0 & 7 \end{bmatrix}$
- Source code:

```
A = [1 \ 4 \ 5; \ 4 \ -3 \ 0; \ 5 \ 0 \ 7];
[V, D] = eig(A); % use built-in function for eigendecomposition
for j = 1 : size(D, 1)
  if norm(A * V(:, j) - D(j, j) * V(:, j)) < 1e-5 % verify result
    disp(['Eigenvector-value pair ' int2str(j) ' verified.'])
  end
                                     Can you numerically verify the 3 equivalent
end
```

Output:

D =0.5952 0.6072 0.5263 -6.0892 -0.7707 0.6167 0.1601 0.9383 -0.2274 -0.5009 0.8351 10.1509

expressions on the previous slide?

Eigendecomposition by Hand (optional)

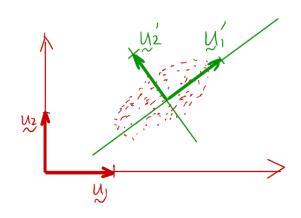
 \bullet Thm: Eigenvalues are roots of the *characteristic polynomial* $\det(\mathbf{A} - \lambda \mathbf{I})$.

• Ex:
$$\mathbf{A} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$

$$0 = \det \left(\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 5 - \lambda & 4 \\ 1 & 2 - \lambda \end{bmatrix} \right)$$
$$= \lambda^2 - 7\lambda + 6 \Rightarrow \lambda_1 = 6, \ \lambda_2 = 1.$$

For
$$\lambda_1 = 6$$
, $(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{v} = 0 \Leftrightarrow \left\{ \begin{array}{l} -\mathbf{v}_1 + 4\mathbf{v}_2 = 0 \\ \mathbf{v}_1 - 4\mathbf{v}_2 = 0 \end{array} \right. \Rightarrow \mathbf{v} = \left[\begin{array}{l} 4 \\ 1 \end{array} \right]$ Nonunique solutions for underdetermined systems $\lambda_2 = 1$, $(\mathbf{A} - \lambda_2 \mathbf{I}) \mathbf{v} = 0 \Leftrightarrow \left\{ \begin{array}{l} 4\mathbf{v}_1 + 4\mathbf{v}_2 = 0 \\ \mathbf{v}_1 + 4\mathbf{v}_2 = 0 \end{array} \right. \Rightarrow \mathbf{v} = \left[\begin{array}{l} 1 \\ -1 \end{array} \right]$ Systems

Principal Component Analysis (Unsupervised Learning)



Learning objectives

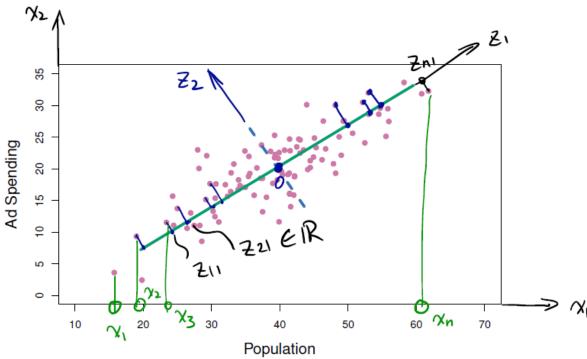
- Explain the two equivalent goals of PCA
- o Implement the PCA algorithm and visualize the results (Ref: 10.2 of James et al. 2013, 12.2 of Murphy 2012. Extra ref: 12.1 of Bishop 2006.)

Unsupervised Learning

- ◆ Def: Learns from a set of unlabeled data to discover interesting patterns.
 - → Visualize the data in an informative way.
 - → Discover subgroups among observations/variables.
- **♦** Examples:
 - + Movies grouped by ratings and behavioral data from viewers.
 - + Groups of shoppers characterized by browsing & purchasing histories.
 - → Subgroups of breast cancer patients grouped by gene expressions.
 - → Tweets grouped by latent topics inferred from the use of words.

PCA: Two Equivalent Goals

Goals, i.e., cost/loss/objective functions, of PCA:
 (1) maximize variance, and (2) minimize error.



PCA Objective I: Maximizing Variance

- ◆ Maximize variance: Project data onto a lower-dimensional subspace while maximizing the variance of the projected data.
- Details:

$$\{\mathbf{x}_i\}_{i=1}^n, \quad \mathbf{x}_i \in \mathbb{R}^p$$

$$\mathbf{u}_1 : \left\| \mathbf{u}_1 \right\|^2 = 1$$

Unit vector

$$z_{i1} = \mathbf{u}_1^T \mathbf{x}_i$$

Projection of \mathbf{x}_i along direction \mathbf{u}_1

- ◆ Naming:
 - $+ z_{i1}$ —score, coefficient, transformed coefficient, weight, projected values, ...
 - $+ u_1$ —loading, (Ist) principal component vector, ...

NC STATE UNIVERSITY

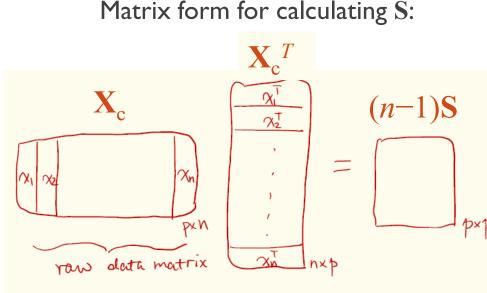
Spread
$$=$$
 $\frac{1}{n-1}\sum_{i=1}^n \left(z_{i1}-\overline{z_1}\right)^2$: where $\overline{z_1}\stackrel{\text{def}}{=}\frac{1}{n}\sum_{i=1}^n z_{i1}$ is the sample mean.

Sample variance measures spread of the projected data along \mathbf{u}_1 .

$$= \frac{1}{n-1} \sum_{i=1}^{n} \left(\mathbf{u}_{1}^{T} \mathbf{x}_{i} - \mathbf{u}_{1}^{T} \bar{\mathbf{x}} \right)^{2}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} \mathbf{u}_{1}^{T} \left(\mathbf{x}_{i} - \bar{\mathbf{x}} \right) \left(\mathbf{x}_{i} - \bar{\mathbf{x}} \right)^{T} \mathbf{u}_{1}$$

$$= \mathbf{u}_{1}^{T} \left[\frac{1}{n-1} \sum_{i=1}^{n} \left(\mathbf{x}_{i} - \bar{\mathbf{x}} \right) \left(\mathbf{x}_{i} - \bar{\mathbf{x}} \right)^{T} \right] \mathbf{u}_{1}$$
S, sample covariance



(Assuming all \mathbf{x}_i are already centered, i.e., $\mathbf{x}_i \leftarrow \mathbf{x}_i - \overline{\mathbf{x}}, \ \forall i$.)

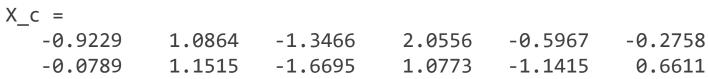
NC STATE UNIVERSITY

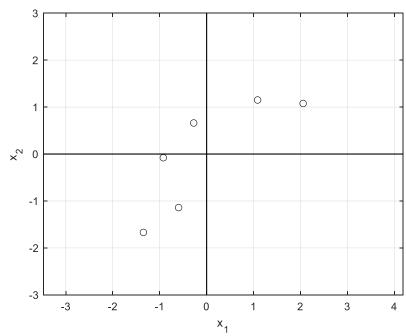
Source code:

```
plot(X_c(1, :), X_c(2, :), 'ko');
xlabel('x_1'); ylabel('x_2');
axis([-3 3 -3 3]); axis equal;
hold on;
```

$$S = (X_c * X_c') / (n-1);$$

Output:





maximize_u
$$\mathbf{u}^T \mathbf{S} \mathbf{u}$$
 subject to $\|\mathbf{u}\| = 1$

Use Lagrange, we have $J(\mathbf{u}) = \mathbf{u}^T \mathbf{S} \mathbf{u} + \lambda \left(1 - \mathbf{u}^T \mathbf{u}\right)$. Taking the gradient $\nabla_{\mathbf{u}}$ (i.e., a vector of partial derivatives, $\left[\frac{\partial}{\partial u_1}, \dots, \frac{\partial}{\partial u_n}\right]^T$) for $J(\mathbf{u})$ and set it to the **0** vector

$$\nabla_{\mathbf{u}} J(\mathbf{u}) = 2\mathbf{S}^T \mathbf{u} + \lambda(-2\mathbf{u}) = \begin{vmatrix} \mathbf{0}, \\ \mathbf{u} = \hat{\mathbf{u}} \end{vmatrix}$$

we obtain $\mathbf{S}\hat{\mathbf{u}} = \lambda \hat{\mathbf{u}}$. Left multiply $\hat{\mathbf{u}}^T$ to both sides, we have

$$\hat{\mathbf{u}}^T \mathbf{S} \hat{\mathbf{u}} = \hat{\mathbf{u}}^T \lambda \hat{\mathbf{u}} = \lambda \|\hat{\mathbf{u}}\|^2 = \lambda.$$

The cost function is then simplified to finding the largest λ , or largest eigenvalue of S. $\hat{\mathbf{u}}$ is the eigenvector which corresponds to the largest eigenvalue.

NC STATE UNIVERSITY

```
Source code:
[U, Lambda] = eig(S);
eigenvalues = diag(Lambda);
for k = 1 : size(U, 2)
                                                            PC2
  u = U(:, k);
                                                 PC1
  len = sqrt(eigenvalues(k));
                                                    0
  plot([0 len*u(1)], [0 len*u(2)],
'LineWidth', 2, 'color', color_arr(k));
                                                  -2
                                                         0
                                                                 2
end
```

Output:

PCA: Forward Transform and Reconstruction

Analysis/Transform:

Also known as Karhunen-Loeve Transform (KLT)

$$\begin{bmatrix} z_{i1} \\ z_{i2} \\ \vdots \\ z_{in} \end{bmatrix} = \begin{bmatrix} ---\frac{\mathbf{u}_1^T}{\mathbf{u}_2^T} - -- \\ ----\frac{\mathbf{v}_2^T}{\mathbf{u}_n^T} - -- \\ \vdots \\ \mathbf{u}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_i \end{bmatrix}$$

$$\mathbf{z}_i = \mathbf{U}^T \mathbf{x}_i$$

Synthesis/Reconstruction:

$$\mathbf{x}_i = \mathbf{U}\mathbf{z}_i = \begin{bmatrix} \mathbf{u}_1^{\dagger} & \cdots & \mathbf{u}_n^{\dagger} \end{bmatrix} \begin{bmatrix} z_{i1} \\ \vdots \\ z_{in} \end{bmatrix} = \sum_{k=1}^{n} z_{ik} \mathbf{u}_k$$

$$= \begin{bmatrix} 1.19 \\ 1.04 \end{bmatrix} + \begin{bmatrix} -0.09 \\ 0.11 \end{bmatrix}$$
Contribution from PC2 is small

Analysis example:

$$\underbrace{\begin{bmatrix} -1.58 \\ -0.14 \end{bmatrix}}_{\mathbf{z}_{i}} = \underbrace{\begin{bmatrix} -0.75 & 0.66 \\ -0.66 & -0.75 \end{bmatrix}}_{\mathbf{U}^{\mathbf{T}}} \underbrace{\begin{bmatrix} 1.09 \\ 1.15 \end{bmatrix}}_{\mathbf{x}_{i}}$$

Synthesis example:

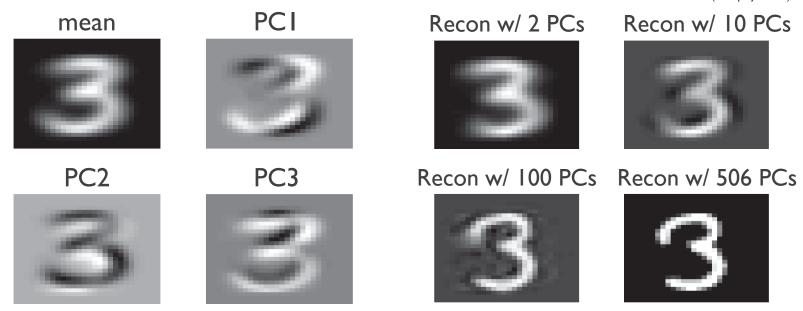
$$\underbrace{\begin{bmatrix} 1.09 \\ 1.15 \end{bmatrix}}_{\mathbf{x}_{i}} = \underbrace{\begin{bmatrix} -0.75 & 0.66 \\ -0.66 & -0.75 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} -1.58 \\ -0.14 \end{bmatrix}}_{\mathbf{z}_{i}}$$

$$= -1.58 \begin{bmatrix} -0.75 \\ -0.66 \end{bmatrix} - 0.14 \begin{bmatrix} 0.66 \\ -0.75 \end{bmatrix}$$

$$= \begin{bmatrix} 1.19 \\ 1.04 \end{bmatrix} + \begin{bmatrix} -0.09 \\ 0.11 \end{bmatrix}$$
Contribution for PC2 is small

Reconstruction Using Dominant PCs

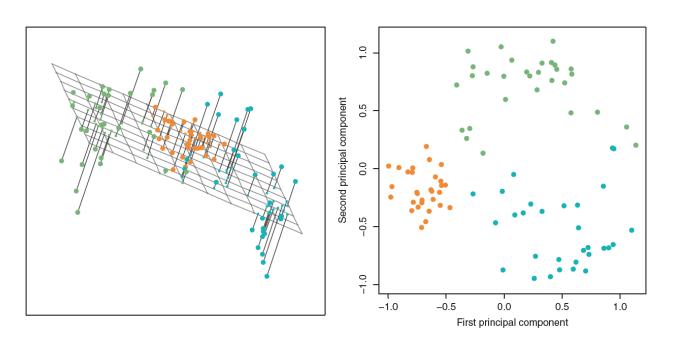
(Murphy 2012)



- Each image of 50x50 is stacked into a column vector of length 2,500.
- Sample covariance matrix will be of size 2,500x2,500.
- Eigenvectors of length 2,500 are <u>reshaped</u> to 50x50 for display. May call them "eigen-images."

PCA Objective 2: Minimizing Error

◆ Approximate the data points using a presentation in a lower-dimensional subspace.



NC STATE UNIVERSITY

Assume \mathbf{x}_i 's are centered, i.e., $\mathbf{x}_i \leftarrow \mathbf{x}_i - \bar{\mathbf{x}}$, $\forall i$.

(Optional)

$$J(\mathbf{u}_{1}, z_{i1}) = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - z_{i1}\mathbf{u}_{1}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - z_{i1}\mathbf{u}_{1})^{T} (\mathbf{x}_{i} - z_{i1}\mathbf{u}_{1})$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{x}_{i} - 2z_{i1}\mathbf{x}_{i}^{T}\mathbf{u}_{1} + z_{i1}^{2}\mathbf{u}_{1}^{T}\mathbf{u}_{1})$$

$$\frac{\partial}{\partial z_{j1}} J = \frac{1}{n} (-2\mathbf{x}_j^T \mathbf{u}_1 + 2z_{j1} \underbrace{\mathbf{u}_1^T \mathbf{u}_1}) = \begin{vmatrix} 0 \Rightarrow \hat{z}_{j1} = \mathbf{u}_1^T \mathbf{x}_j \\ z_{j1} = \hat{z}_{j1} \end{vmatrix}$$

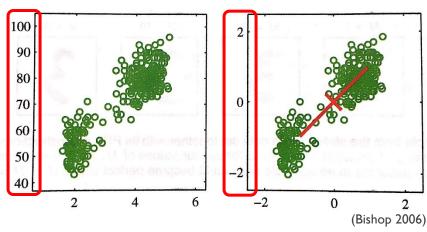
$$J = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i^T \mathbf{x}_i - 2z_{i1}^2 + z_{i1}^2)$$
 (skip the hat of z_{i1} for simplicity)

$$\min_{\mathbf{u}_1} J = \max_{\mathbf{u}_1} \sum_{i=1}^{n} z_{i1}^2 = \underline{\text{maximize the spread!}}$$

Same as the Objective I

PCA's Caveat: Proper Standardization May be Needed

• If coordinates of $\mathbf{x}_i = [x_{i1}, ..., x_{ip}]^T$ have different units, maximal variance direction may be biased toward x_{ij} with largest magnitude.



- Why is standardization needed in this case?
- Do the hand-written digit and face recognition need standardization?

When proper standardization of coordinate/variable/feature is needed:

$$\tilde{x}_{ij} = \frac{x_{ij} - \bar{x}_j}{\sqrt{\frac{1}{n} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2}}, \quad j = 1, \dots, p.$$
 Standardize along the feature/*x*-direction rather than the *y*-direction of data matrix **X**.

Standardize along the feature/x-

PCA: Applications and Beyond

- PCA is lightweight yet powerful. Should be tried before applying more sophisticated tools.
- Modern replacement of PCA:
 - → Data visualization: t-SNE, UMAP.
 - → Dimensionality reduction: Nonlinear dimensionality reduction algorithms.
 - ★ Lossy data compression: Data-independent transforms tailored for data following certain statistical behaviors.
 - → Feature extraction: Topic modeling (unsupervised), CNN self-learned feature extraction (supervised).

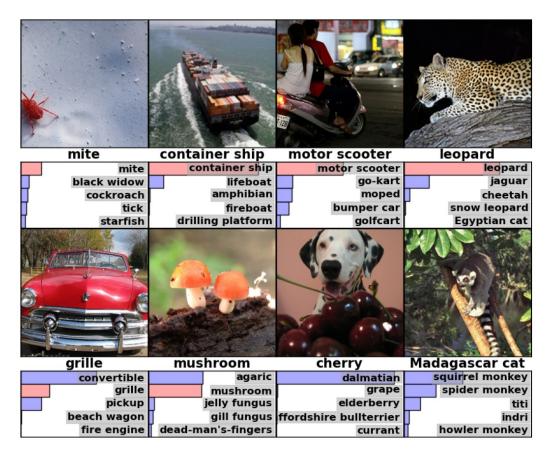
Linear Regression and Prediction (Supervised Learning)

Learning objectives

- Interpret regression problem mathematically and geometrically
- Apply linear regression to learning problems without overfit

(A comprehensive treatment of basic linear regression can be found in Scheffe Ch1, available on the library's course reserves.)

Supervised Learning: Classification

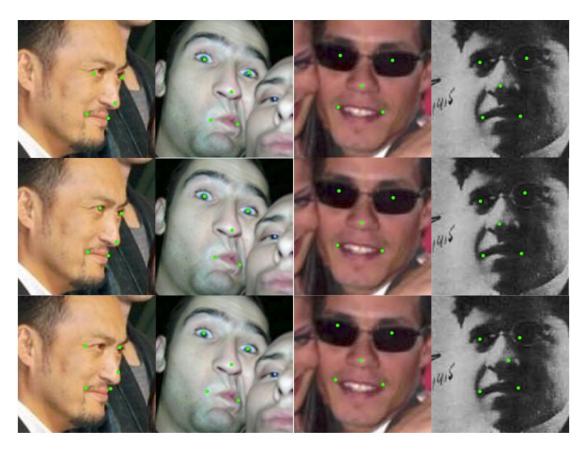


Goal of classification:
Assign a categorical/
qualitative label, or a
class, to an given input.

Given an image, it returns the class label.

Optionally, provide a "confidence score."

Supervised Learning: Regression



Goal of regression:

Assign a number to each input.

Loosely, ML people also call it "label."

← Given a facial image, it returns the 2D location for each key point of the face.

Supervised Learning: Definition

♦ Terminologies:

- igspace Training data: $\mathcal{D}_{\mathrm{tr}} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- igspace Test data: $\mathcal{D}_{\text{te}} = \{(\mathbf{x}_i, y_i)\}_{i=n+1}^{n+m}$
- + Learned model: $y = f(\mathbf{x})$
- Goal: Given a set of training data \mathcal{D}_{tr} as the inputs, we would like to compute a learned model $y = f(\mathbf{x})$ such that it can generate accurate predicted outputs

$$\hat{y}_i = f(\mathbf{x}_i), \quad i = n+1, \dots, n+m,$$

from a set of new inputs $\{\mathbf{x}_i\}_{i=n+1}^{n+m}$ of the test data \mathcal{D}_{te} whose labels $\{y_i\}_{i=n+1}^{n+m}$ have never been taken into account when the model is computed.

Quantifying the Accuracy of Prediction

- Quantify the accuracy of the learned model by a loss function (or cost/objective function), based on predicted output, \hat{y}_i , and the true output, y_i , namely, $L(\hat{y}, y)$.
- ◆ A typical choice for the loss function for a continuous-valued output is the *mean squared error*:

$$L(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{m} \sum_{i=n+1}^{n+m} (\hat{y}_i - y_i)^2$$

Key ML assumption: Test data shouldn't have been seen before (at the training stage), or there will be overfit.

Simplest Example: Linear Model

$$\boldsymbol{\theta} = [\beta_0, \beta_1]^T$$
 is the parameter vector/weights.

$$\mathbb{E}[Y_i] = \beta_0 + \beta_1 x_i = \frac{\text{linear combination of unknowns } \beta_0 \text{ and } \beta_1}{\text{with known coefficient 1 and } x_i.}$$

Linear Model in Matrix-Vector Form

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}_{n \times 2}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1}, \quad \mathbf{e} = \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}_{n \times 1}$$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$
 "Matrix-vector form" data matrix

Linear Model with Multiple Predictors / Features

Multiple (Linear) Regression Model:

$$Y_i = \sum_{j=1}^p x_{ij}\beta_j + e_i, \quad i = 1, \dots, n.$$
$$\mathbf{Y}_{n \times 1} = \mathbf{X}_{n \times p}\boldsymbol{\beta}_{p \times 1} + \mathbf{e}_{n \times 1}$$

vector of random elements

Linear Regression Example

$$Y_i = \beta_0 + \beta_1 x_{i_1} + \beta_2 x_{i_2} + e_i, \quad i = 1, \dots, 50$$

 Y_i : grade

 x_{i2} : time spent on review

$$\begin{array}{ll} Y_i: \text{ grade} \\ x_{i1}: \text{ time spent on hw} \\ x_{i2}: \text{ time spent on review} \end{array} \left[\begin{array}{c} Y_1 \\ \vdots \\ Y_{50} \end{array} \right] = \left[\begin{array}{ccc} 1 & x_{11} & x_{12} \\ \vdots & \vdots & \vdots \\ 1 & x_{50,1} & x_{50,2} \end{array} \right] \left[\begin{array}{c} \beta_0 \\ \beta_1 \\ \beta_2 \end{array} \right] + \left[\begin{array}{c} e_1 \\ \vdots \\ e_{50} \end{array} \right]$$

How to estimate model parameters β_0, β_1 , and β_2 ? Least-Squares!

Least-Squares for Parameter Estimation

Problem Setup: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, where $\mathbf{X} \triangleq [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_p]$.

Estimate β such that $J(\beta) = \|\mathbf{Y} - \mathbf{X}\beta\|^2$ is minimized.

or
$$J(\beta) = \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

This is called "least-squares."

Least-Squares via Vector Calculus

Method 1:
$$\nabla_{\beta}J(\beta) = \begin{vmatrix} 0 \\ \beta = \hat{\beta} \end{vmatrix}$$

Recall:
$$J(\boldsymbol{\beta}) = \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

$$\nabla_{\boldsymbol{\beta}} J(\boldsymbol{\beta}) = 2 \left[-\mathbf{X}^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) \right] = \begin{vmatrix} \mathbf{0} \\ \boldsymbol{\beta} = \hat{\boldsymbol{\beta}} \end{vmatrix}$$

$$\mathbf{X}^T\mathbf{Y} = \mathbf{X}^T\mathbf{X}\hat{\boldsymbol{\beta}}$$

$$\mathbf{X}^T(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{eta}}) = \mathbf{0}$$

(Error orthogonal to data)

Normal Equation (N.E.)

Least-Squares via Partial Differentiation (optional)

If linear algebra is not used, the derivation can be much more involved:

Method 2:

$$\frac{\partial J}{\partial \beta_k} = \sum_{i=1}^n 2(Y_i - \sum_{j=1}^p x_{ij}\beta_j) \underbrace{\frac{\partial}{\partial \beta_k} \Big(- \big(\dots + x_{ik}\beta_k + \dots \big) \Big)}_{-x_{ik}}$$

$$= |_{\beta_i = \hat{\beta}_i} 0, \quad k = 1, \dots, p$$

$$\iff \sum_{i} Y_{i} x_{ik} = \sum_{i} \sum_{j} x_{ij} \hat{\beta}_{j} x_{ik} \iff \mathbf{X}^{T} \mathbf{Y} = \mathbf{X}^{T} \mathbf{X} \hat{\boldsymbol{\beta}} \text{ Normal Equation (N.E.)}$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y}$$
where $\mathbf{X}^{T} \mathbf{Y} = \left[\sum_{i=1}^{n} x_{ik} Y_{i}\right]_{n \times 1}, \ \mathbf{X}^{T} \mathbf{X} = \left[\sum_{i=1}^{n} x_{ij} x_{ik}\right]_{n \times n}$

$$\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = \left[\sum_{j=1}^p \left(\sum_{i=1}^n x_{ij} x_{ik} \right) \hat{\beta}_j \right]_{p \times 1}$$

Recall: $J(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left(Y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$

Geometric Interpretation of Least-Squares (LS)

- ◆ The LS procedure finds a vector $\widehat{\beta}$ in the column (vector) space of X, i.e., $C(X) = \{Xb, b \in \mathbb{R}^p\}$ such that
 - $+ \widehat{Y} = X\widehat{\beta}$ is as close as possible to y, or
 - + $(Y \widehat{Y}) \perp C(X)$.

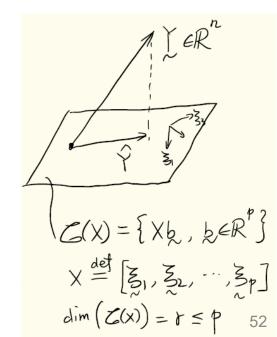
$$(\mathbf{Y} - \hat{\mathbf{Y}}) \perp \mathcal{C}(\mathbf{X})$$

$$\iff (\mathbf{Y} - \hat{\mathbf{Y}}) \perp \mathbf{X}\mathbf{b}, \quad \forall \mathbf{b} \in \mathbb{R}^{p}$$

$$\iff \boldsymbol{\xi}_{j}^{T}(\mathbf{Y} - \hat{\mathbf{Y}}) = 0, \quad j = 1, \cdots, p$$

$$\iff [\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{p}]^{T}(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \mathbf{0}$$

$$\iff \mathbf{X}^{T}\mathbf{Y} = \mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}}$$



Properties of Least-Square Estimate

If $rank(\mathbf{X}) \triangleq r = p$ $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$ is unique soluntion.

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}] = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} \boldsymbol{\beta}) = \boldsymbol{\beta} \text{ (unbiased)}$$

②
$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{H}\mathbf{Y}$$

$$\mathbf{H} : \text{"hat" matrix, or "orthogonal projector."} \quad \mathbf{H}^n = \mathbf{H}. \text{ Why?}$$

Ex: Linear Model for Learning and Prediction

- ◆ Training data (3 data points / a random sample of size 3):
 - → Feature/predictor 1: (2, 1, 1). Feature/predictor 2: (1, 2, 1).
 - **→** Labels: (1, 1, 1).
- ◆ Test data (2 data points / a random sample of size 2):
 - → Feature 1: (1.2, 1.8). Feature 2: (0.9, 1.3).
 - **→** Labels: (0.9, 0.8).
- ♦ Tasks:
 - a) Learn a linear model without intercept.
 - b) Using drawing to illustrate the data and learned model.
 - c) Evaluate the mean squared errors (MSEs) of training and testing.

a)
$$\mathbf{X} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$
 $\mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ (\mathbf{X}, \mathbf{Y})

Estimated/
trained model $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$

parameters:
$$= \left(\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix} \right)^{-1} \left(\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 6 & 5 \\ 5 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 & -5 \\ -5 & 6 \end{bmatrix} \cdot \frac{1}{11} \cdot \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ $(\mathbf{X}, \mathbf{Y}) : \begin{array}{c} \text{training} \\ \text{data} \end{array}$ $\mathbf{X}^T \mathbf{Y}$ $\begin{bmatrix} \mathbf{b} \end{bmatrix}$ $\begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} \end{bmatrix}$ $\begin{bmatrix} \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} \end{bmatrix}$

 $C(x) = span \{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \} \subset \mathbb{R}^3$

Predicted output based on training data:

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \begin{bmatrix} 2 & 1\\ 1 & 2\\ 1 & 1 \end{bmatrix} \xrightarrow{\frac{4}{11}} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 12\\ 12\\ 8 \end{bmatrix} \neq \mathbf{Y}, \text{ or } \mathbf{\hat{Y}} = \mathbf{H}\mathbf{Y} = \frac{1}{11} \begin{bmatrix} 12\\ 12\\ 12\\ 8 \end{bmatrix}$$

$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y} = \frac{1}{11} \begin{bmatrix} 12\\ 12\\ 12\\ 8 \end{bmatrix}$$

$$55$$

NC STATE UNIVERSITY

$$\frac{1}{3} \sum_{i=1}^{3} \left(y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}} \right)^2 = \frac{1}{3} \| \mathbf{Y} - \hat{\mathbf{Y}} \|^2 = \frac{1}{3} \| \mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}} \|^2$$

$$= \frac{1}{3} \cdot \frac{1}{11^2} \left\| \begin{bmatrix} 12 - 11 \\ 12 - 11 \\ 8 - 11 \end{bmatrix} \right\|^2 = \frac{1}{3} \cdot \frac{1}{11^2} (1 + 1 + 9) = \frac{1}{3} \cdot \frac{1}{11} = 0.03$$

$$\mathbf{X}_{\text{test}} = \begin{bmatrix} 1.2 & 0.9 \\ 1.8 & 0.3 \end{bmatrix} \quad \mathbf{Y}_{\text{test}} = \begin{bmatrix} 0.9 \\ 0.8 \end{bmatrix} \quad (\mathbf{X}_{\text{test}}, \mathbf{Y}_{\text{test}}) : \frac{\text{testing}}{\text{data}}$$

$$\frac{1}{2} \sum_{i=4}^{5} \left(y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}} \right)^2 = \frac{1}{2} \|\mathbf{Y}_{\text{test}} - \hat{\mathbf{Y}}_{\text{test}}\|^2 = \frac{1}{2} \|\mathbf{Y}_{\text{test}} - \mathbf{X}_{\text{test}} \hat{\boldsymbol{\beta}}\|^2$$

$$= \frac{1}{2} \left\| \begin{bmatrix} 0.9 \\ 0.8 \end{bmatrix} - \begin{bmatrix} 1.2 & 0.9 \\ 1.8 & 0.3 \end{bmatrix} \left(\frac{4}{11} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) \right\|^2 = \frac{1}{2} \left\| \begin{bmatrix} 0.14 \\ 0.04 \end{bmatrix} \right\|^2 = 0.01$$

Convolutional Neural Network (CNN)

Learning objectives

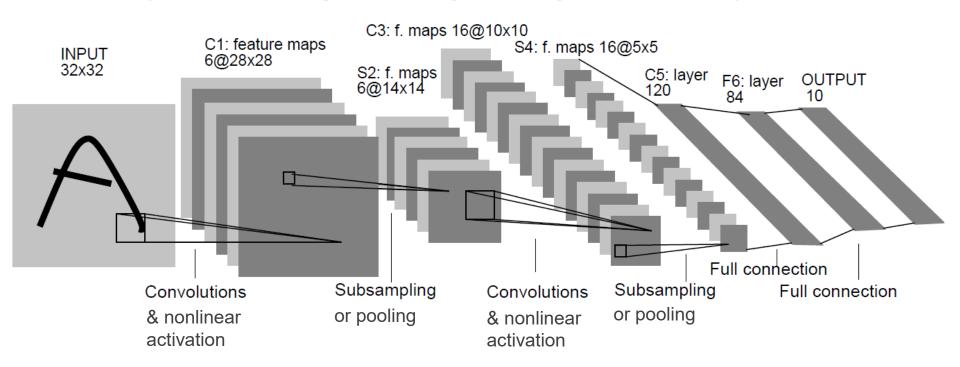
- Describe the structure of CNN
- Build and train simple CNNs using a deep learning package

(Ref: Ch 9 of Goodfellow et al. 2016)

Some slides were adapted from Stanford's CS23 In by Fei-Fei Li et al.: http://cs23 In.stanford.edu/

Convolutional Neural Network (CNN)

The **single** most important technology that fueled the rapid development of **deep learning** and **big data** in the past decade.



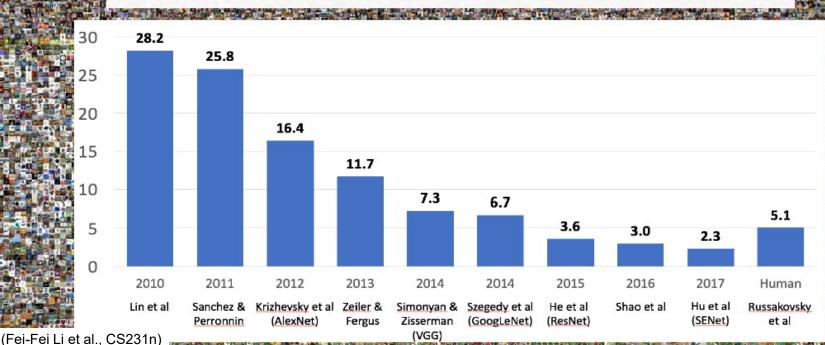
LeCun, Bottou, Bengio, Haffner, "Gradient-Based Learning Applied to Document Recognition," *Proc. IEEE*, 1998.

Why is Deep Learning so Successful?

- I. Improved model: convolutional layer, more layers ("deep"), simpler activation (i.e., ReLU), skip/residual connection (i.e., ResNet), attention (i.e., Transformer)
- 2. Big data: huge dataset, transfer learning
- **3. Powerful computation:** graphical processing units (GPUs)
- Example of big data: ImageNet (22K categories, 15M images)

IM ... GENET Large Scale Visual Recognition Challenge

The Image Classification Challenge: 1,000 object classes 1,431,167 images



Linear Model to Neural Network

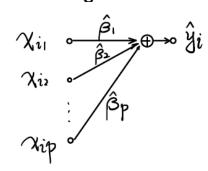
Recall linear model w/ multiple predictors / features / inputs.

$$\frac{y_i}{y_i} = \sum_{j=1}^{p} x_{ij} \beta_j + e_i = \begin{bmatrix} \beta_1, ..., \beta_p \end{bmatrix} \begin{bmatrix} x_{i1} \\ x_{ip} \end{bmatrix} + e_i, \quad i=1,..., n.$$
true output $\hat{\beta}_i = \sum_{j=1}^{p} x_{ij} \beta_j = \begin{bmatrix} \hat{\beta}_1, ..., \hat{\beta}_p \end{bmatrix} \begin{bmatrix} x_{i1} \\ x_{ip} \end{bmatrix}$

$$= \begin{bmatrix} \hat{\beta}_1, ..., \hat{\beta}_p \end{bmatrix} \begin{bmatrix} x_{i1} \\ x_{ip} \end{bmatrix}$$
predicted output

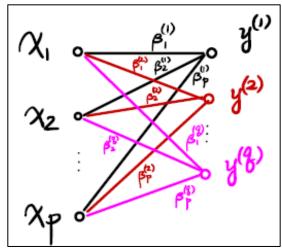
extimated

Graphically we have:

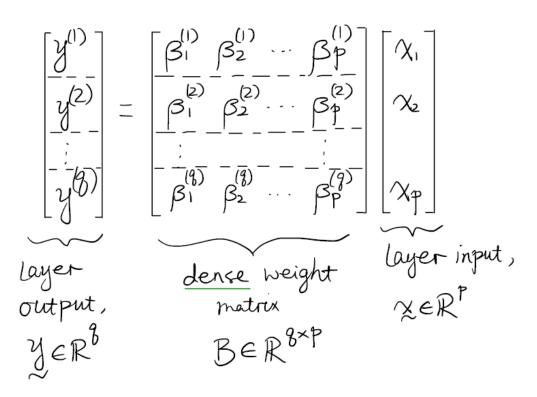


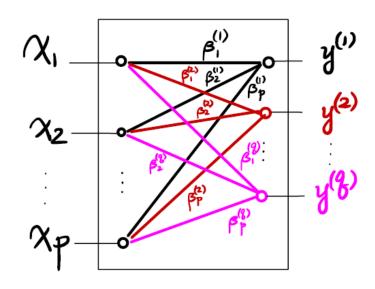
(1) Use multiple linear models

2 Simplify the notations.



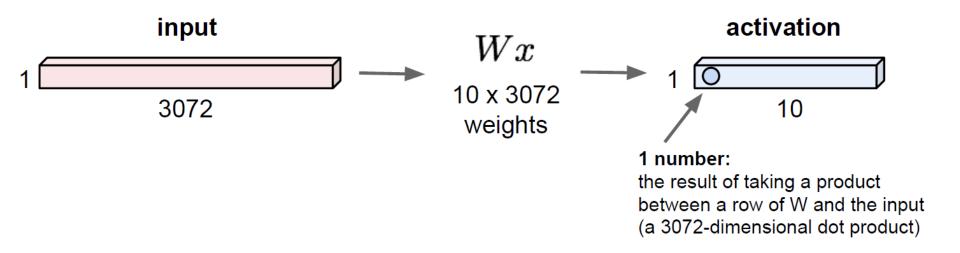
Fully-Connected Layer for ID Signal



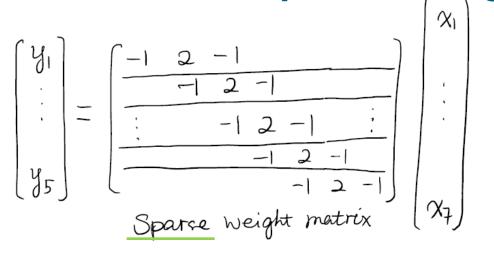


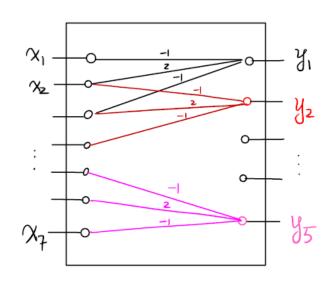
Fully-Connected Layer for RGB Image

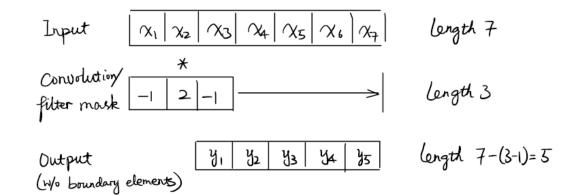
32x32x3 image -> stretch to 3072 x 1



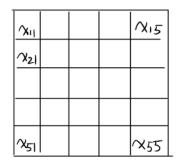
Convolutional Layer for ID Signal







Convolutional Layer for 2D Matrix/Image



X

y11 Y21

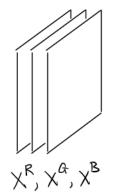
2D Convolution

Input image

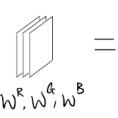
filter mask

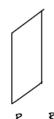
Activation may

y14



X



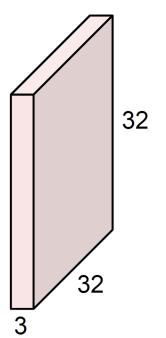


 $X^{R} * W^{R} + X^{G} * W^{G} + X^{B} * W^{B}$

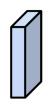
Multiple color channels need multiple filter masks

Convolutional Layer for RGB Image

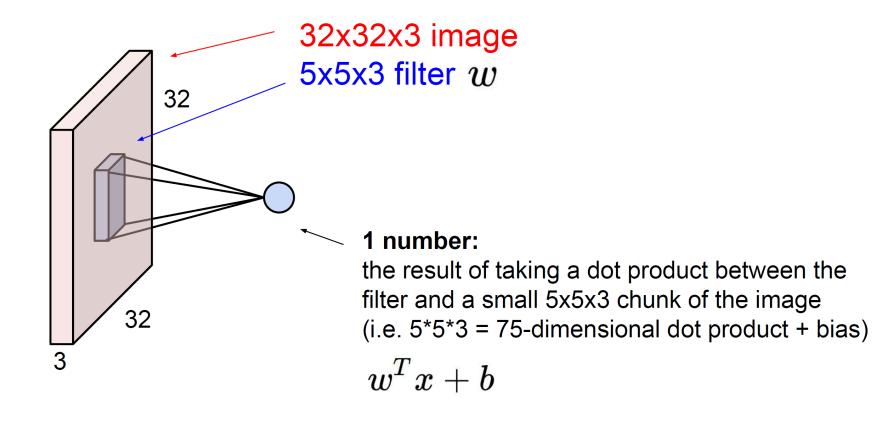
32x32x3 image



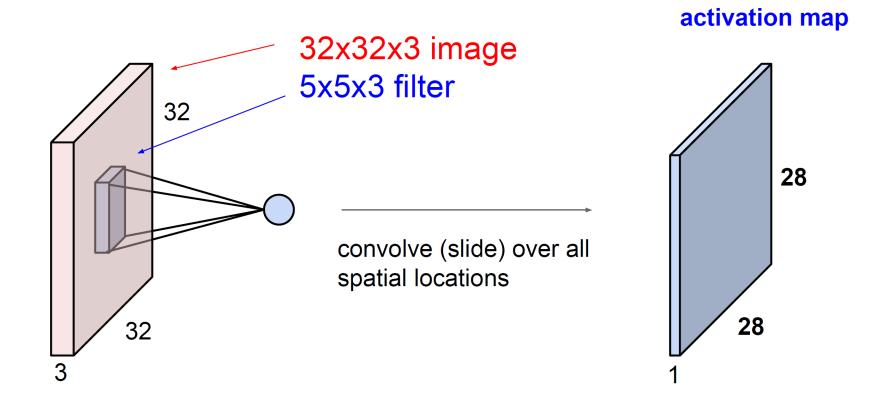
5x5x3 filter



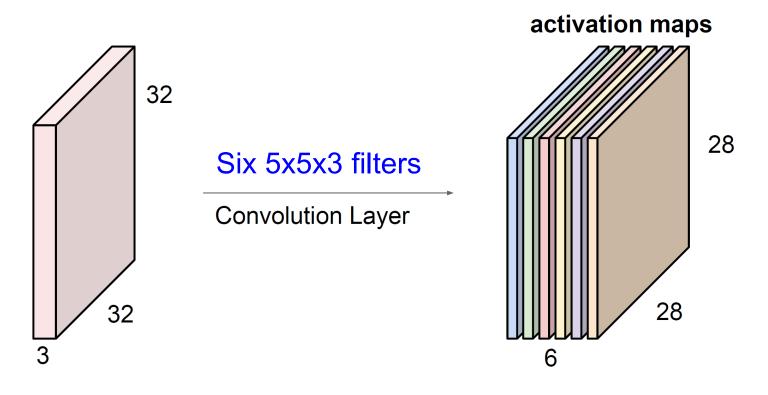
Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"



A closer look at spatial dimensions:

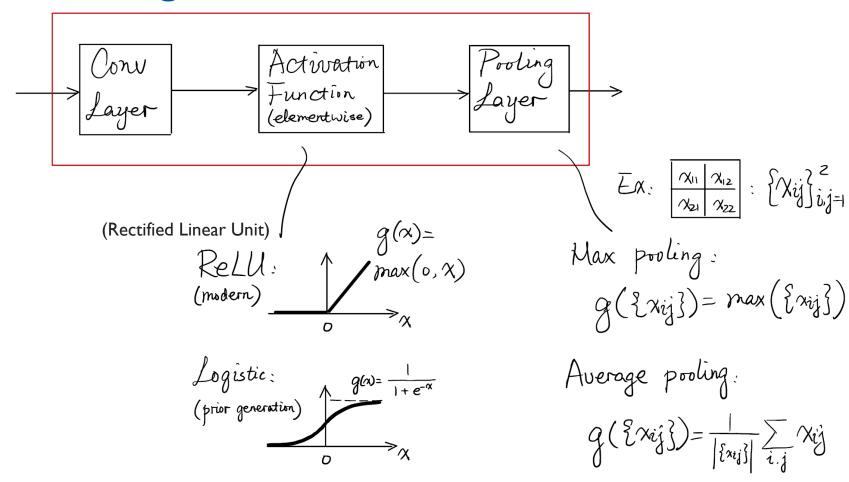


For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

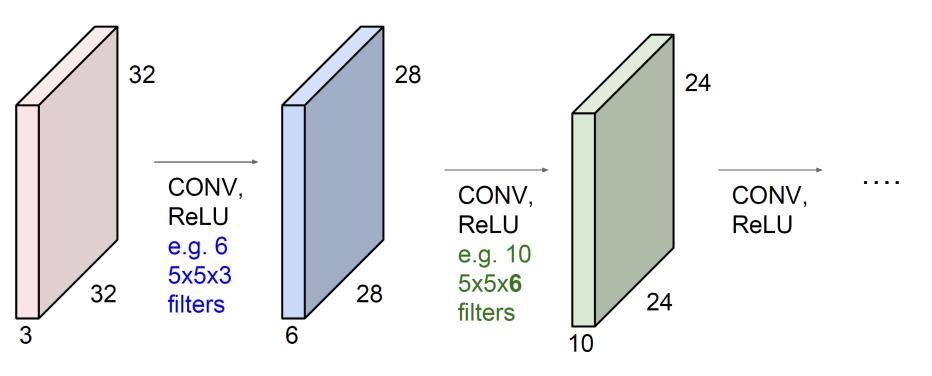


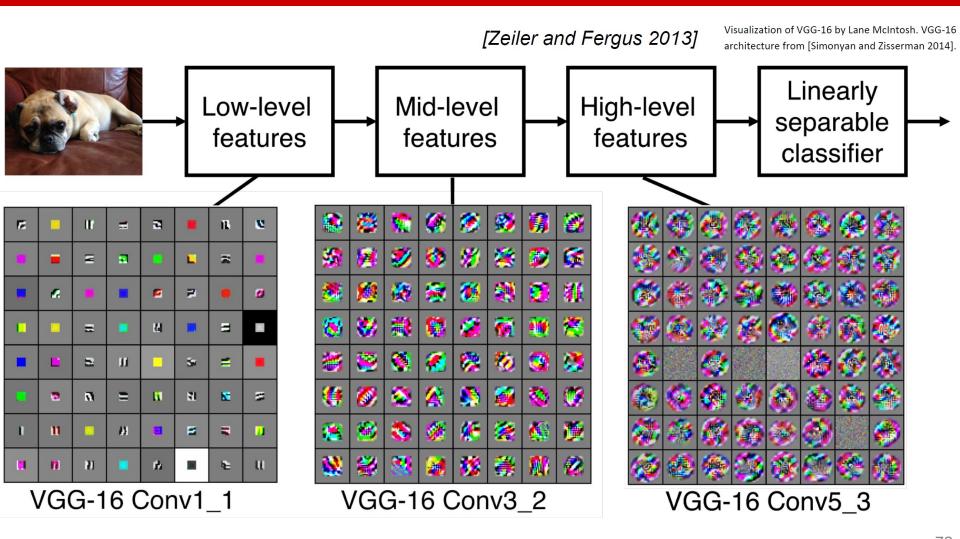
We stack these up to get a "new image" of size 28x28x6!

Building Block for Modern CNN



CNN is composed of a sequence of convolutional layers, interspersed with activation functions (ReLU, in most cases).





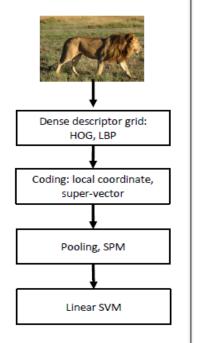
IM GENET Large Scale Visual Recognition Challenge

Pooling

Other

<u>Year 2010</u>

NEC-UIUC

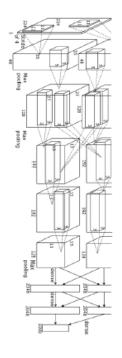


[Lin CVPR 2011]

Lion image by Swissfrog is licensed under CC BY 3.0

Year 2012

SuperVision

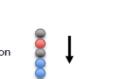


[Krizhevsky NIPS 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Year 2014

GoogLeNet



Convolution Softmax

[Szegedy arxiv 2014]

conv-512 maxpool fc-4096

fc-4096 fc-1000 softmax

VGG

Image

conv-64

conv-64

maxpool conv-128

conv-128

maxpool conv-256

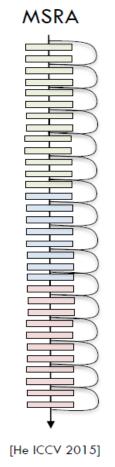
conv-256

maxpool conv-512 conv-512

maxpool conv-512

[Simonyan arxiv 2014]

Year 2015



One Last Thing: When Output is Categorical

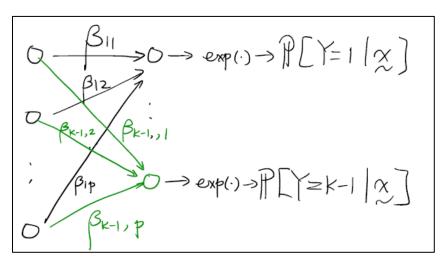
- ◆ A **softmax layer** is needed:
- Softmax function:

$$O_i(z) = \frac{e^{\beta z_i}}{\sum_{j=1}^{k} e^{\beta z_j}}$$

♦ Ex:

$$K=2$$
 $\sigma_{1} = \frac{e^{\beta z_{1}}}{e^{\beta z_{1}} + e^{\beta z_{2}}}$

$$= \frac{1}{1 + e^{\beta (z_{2} - z_{1})}}$$



When
$$\beta$$
 very large, $Z_2 > Z_1$ leads to $\begin{cases} O_1 = 0 \\ O_2 = 1 \end{cases}$

Winner takes all!

Machine Learning (ML) and Data Science (DS)

- ◆ Follow-up machine learning / data science courses:
 - → ECE 492-45 Intro to Machine Learning
 - ECE 542 Neural Nets and Intro to Deep Learning
 - ➤ ECE 592-61 Data Science
 - ECE 759 Pattern Recognition and Machine Learning
 - ECE 763 Computer Vision
 - ECE 792-41 Statistical Foundations for Signal Processing & Machine Learning
 - → Any courses/videos on YouTube, Coursera, etc.
- ◆ Data science competitions: kaggle.com
- ◆ Programming languages for ML/DS: Python, R, Matlab