ECE 492-45 Homework 3 (Fall 2021) Instructor: Dr. Chau-Wai Wong Material Covered: Geometric interpretation, Modern ML applications

Problem 1 (20 points) [Orthogonal Projection] Consider the set of inconsistent linear equations Ax = b given by

$\left[\begin{array}{rrr}1&0\\0&1\\1&1\end{array}\right]\left[\begin{array}{r}x_1\\x_2\end{array}\right]=\left[\begin{array}{r}$	$\begin{array}{c}1\\1\\0\end{array}$	•
--	--------------------------------------	---

- a) Find the least-squares solution to these equations.
- b) Find the "hat" matrix **H**. Using Matlab, numerically verify $\mathbf{H} = \mathbf{H}^2$. Argue why.
- c) Find the best approximation $\hat{\mathbf{b}} = \mathbf{H}\mathbf{b}$ to \mathbf{b} . Find the vector $\mathbf{b}' = (\mathbf{I} \mathbf{H})\mathbf{b}$ and show numerically that it is orthogonal to $\hat{\mathbf{b}}$.
- d) What does the matrix $\mathbf{I} \mathbf{H}$ represent? If \mathbf{H} is called the "orthogonal projector," can you think of a name for $\mathbf{I} \mathbf{H}$? Numerically verify $\mathbf{I} \mathbf{H} = (\mathbf{I} \mathbf{H})^2$. Argue why.
- e) In a 3-dimensional coordinate system, draw the column vectors of matrix \mathbf{A} , the column vector space of \mathbf{A} , \mathbf{b} , $\hat{\mathbf{b}}$, and \mathbf{b}' . Make sure that the drawing is reasonably accurate which can reflect the relationship among these quantities.
- **Problem 2** (20 points) [Softmax Function] Given an input image, a neural network extracts a sequence of features $\mathbf{z} = (z_1, \ldots, z_K)$. The softmax output for the *i*th feature z_i is given by

$$\sigma_i(\mathbf{z}) = \frac{\exp(\beta z_i)}{\sum_{j=1}^K \exp(\beta z_j)},$$

where β is a positive integer.

- a) When $\mathbf{z} = (1, 2, 3, 4, 5)$, use your favorite programming language to calculate and plot $\sigma_i(\mathbf{z})$ as a function of *i* in bar charts when β takes values of 0.1, 1, and 10, respectively. Based on the empirical results, could you guess what the role of β is?
- **b)** Prove that $(\sigma_1(\mathbf{z}), \ldots, \sigma_K(\mathbf{z}))$ is a valid probability mass function.
- c) When z_1 is the largest feature value, prove that $\sigma_1(\mathbf{z}) = 1$ as $\beta \to \infty$.
- d) When z_1 is the largest feature value, prove that $\sigma_j(\mathbf{z}) = 0$ for $j = 2, \ldots, K$ as $\beta \to \infty$.
- e) Show that $\sigma_j(\mathbf{z}) = 1/K$ for all $j \in [1, K]$ when $\beta = 0$.
- f) How are the results in c)–e) connected to your guess about the role of β in a)?

This homework has only two problems.