ECE 492-45 Homework 6 (Fall 2021) Instructor: Dr. Chau-Wai Wong Material Covered: Statistical Learning Basics

Problem 1 (20 points) [Optimality of Mean Operators]

- a) We are given two variables X and Y that are not independent. Hence, we may use one to estimate the other. Find the best deterministic function $g(\cdot)$ such that it minimizes the expected squared error between Y and g(X) conditioned on X = x. You may find a change of variable using θ in the place of g(x) helpful. Pay attention to write clearly the upper case X and the lower case x in your submission.
- b) Arithmetic average, or the sample mean in a statistical context, is commonly used in everyday life for making quantitative description. We examine a statistical interpretation for the arithmetic average below. A person weighs μ lb. He tried multiple scales in a supermarket and recorded the reading from each scale, denoted by Y_i for the *i*th scale. We may create a linear model as follows to relate the true weight μ and the measurement Y_i :

$$Y_i = \mu + e_i, \quad i = 1, \dots, N,$$

where e_i is the measurement error of the *i*th scale. Use the mean-square criterion $J(\mu) = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \mu)^2$ to find the closed-form expression for the best estimator for μ . The expression should contain $\{Y_i\}_{i=1}^{N}$ only, and should not contain such symbols as μ or e_i as they were not available when readings were recorded. Does the expression make intuitive sense?

Problem 2 (20 points) [Alternative Neighbor Averaging Method for Simulated Data]

- a) Given a regression function $f(x) = x^2 + 2x + 1$ and a linear model Y = f(X) + e, where $e \sim N(0,1)$ and $X \sim \text{Uniform}(-1,1)$, generate 50 pairs of (x_i, y_i) and graph them using black circles. Also plot the regression function using a black solid curve.
- b) We use a method similar to the nearest neighbor averaging to estimate the regression function. We use a neighborhood of fixed radius $\delta = 0.1$. The estimated regression function takes the following form:

$$\hat{f}(x) = \frac{1}{|I(x)|} \sum_{i \in I(x)} y_i, \quad I(x) = \{i : |x - x_i| \le \delta\},\tag{1}$$

where I(x) is the set of indices of x_i such that they are within δ in terms of distance from x, and |I(x)| is the number of elements of set I(x). For example, when x = 0.9 and $\delta = 0.1$, you first need to find all points that are within the range of [0.8, 1.0] in the x-direction, and then take the average of their values in the y-direction to obtain $\hat{f}(0.9)$. You may want to calculate $\hat{f}(\cdot)$ for all $x \in [-0.9, 0.9]$ with a stepsize 0.01. If there is not a single point within the current neighborhood, use the \hat{f} from the previous step as that for the current step. Draw the estimated regression function using a red solid curve in the same plot of a).

c) (Bonus, 5 points) Vary the neighborhood radius δ , how does the shape of the estimated regression function change?

Problem 3 (20 points) [Linear Regression with R] Complete ISLR-3.6.1–3, 3.6.7, 3.7.8.

For Python users, please download *Boston.csv data* and follow the text book's instructions while referring to *the "equivalence" Python codes of ISLR-3.6.1–3, 3.6.7* and *of ISLR-3.7.8*, where you may find the comments useful.

(You are only given 3 required problems. The rest of time should be devoted to the project proposal.)

Problem 4 (20 points, bonus) [Interpretation of Confidence Interval]

- (a) Given a regression function f(x) = 3x + 1 and a linear model Y = f(X) + e, where $e \sim N(0, 1)$ and $X \sim \text{Uniform}(-1, 1)$, generate 50 pairs of (x_i, y_i) .
- (b) Use the equations in the lecture slides, calculate the all estimates, namely, $\hat{\beta}_0$ and $\hat{\beta}_1$, and their standard errors. Note that when calculating standard errors, use the estimated value RSS/(n-2) to replace the theoretical quantity σ^2 .
- (c) Calculate the confidence interval for β_1 . Is 3 included in the interval?
- (d) Repeat (a)–(c) 1000 times. What is the chance that 3 is included a calculated confidence interval?
- (e) Now, can you explain what is a confidence interval?
- Problem 5 (20 points, bonus) [Hypothesis Test] Download the advertising dataset from ISLR's website. Using formulas from the lecture slides, manually fit a linear model using sales against TV and with intercept. Re-calculate all entries of tables on slides 11 and 13, except the F-statistics. When calculating the *p*-values, using a standard normal distribution in lieu of the *t* distribution. Are the re-calculated values consistent with those in the tables?