ECE 792-41 Homework 2

Material Covered: Linear Regression Model, Geometric Interpretation; Auto-Regressive (AR), Moving-Average (MA) and ARMA Processes, Yule-Walker Equations, Autocorrelation Functions.

- **Problem 1** Scheffe 1.1 (For ω , you need to do partial differentiation; for Ω , skip the derivation and directly write out the estimate for $[\alpha \ \beta \ \gamma]^T$ using the normal equation in matrix-vector form. Do not simplify.)
- Problem 2 Scheffe 1.2
- Problem 3 Scheffe 1.4
- **Problem 4** A first-order autoregressive (AR) process $\{u(n)\}$ that is real-valued satisfies the realvalued difference equation

$$u(n) + a_1 u(n-1) = v(n)$$

where a_1 is a constant and $\{v(n)\}$ is a white-noise process of variance σ_v^2 . Such a process is also referred to as a *first-order Markov process*.

- (a) Suppose in practical implementation, the generation of the process $\{u(n)\}$ starts at n = 1 with initialization u(0) = 0. Determine the mean of the actual $\{u(n)\}$ process that we have obtained. Under what conditions E[u(n)] converges to a constant and what the constant is?
- (b) Now consider the case when {v(n)} has zero mean. Determine the variance of the actual {u(n)} process that we have obtained. Under what conditions Var[u(n)] converges to a constant and what the constant is?
- (c) For the conditions specified in part (b), find the autocorrelation function of the AR process {u(n)}. Sketch this autocorrelation function when n ≫ k, for the two cases 0 < a₁ < 1 and −1 < a₁ < 0.</p>

Problem 5 Consider an autoregressive process $\{u(n)\}\$ of order 2, described by the difference equation

$$u(n) = u(n-1) - 0.5 u(n-2) + v(n)$$

where $\{v(n)\}\$ is a white-noise process of zero mean and variance 0.5.

- (a) Write the Yule-Walker equations for the process.
- (b) Solve these two equations for the autocorrelation function values r(1) and r(2).
- (c) Find the variance of $\{u(n)\}$.

Problem 6 Consider an MA process $\{x(n)\}$ of order 2 described by the difference equation

$$x(n) = v(n) + 0.75 v(n-1) + 0.25 v(n-2)$$

where $\{v(n)\}$ is a zero mean white noise process of unit variance. The requirement is to approximate the process by an AR process $\{u(n)\}$ of order M. Do this approximation for the orders M = 2 and M = 5, respectively.