
ECE 792-41 Homework 3

Material Covered: Yule-Walker Equations, Wiener Filter, and Lagrange

Multipliers.

Problem 1 Let a real-valued AR(2) process {x(n)} be described by

u(n) = x(n) + a1x(n− 1) + a2x(n− 2)

where u(n) is a white noise of zero-mean and variance σ2, and u(n) is uncorrelated with past

values x(n− 1), x(n− 2).

(a) Evaluate r(k) starting from E [x(n+ k)x∗(n)], for k = 0, 1, 2. The results should be in

terms of r(·) and σ2. Compare these results with the Yule-Walker Equations. What

can you conclude?

(b) Find r(1) and r(2) in terms of r(0).

(c) Find the variance of the process {x(n)}.

Problem 2 Assume v(n) and w(n) are white Gaussian random processes with zero mean and

variance 1. The two filters shown in the figure below areG(z) = 1
1−0.4z−1 andH(z) = 2

1−0.5z−1 .

The desired signal is u(n).
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(a) Design a 1st-order Wiener filter. Derive the analytic form of the prediction error, J =

E
[
|u(n)− û(n)|2

]
, and then evaluate.

(b) Repeat (a) by using a 2nd-order Wiener filter.

(c) Argue why the results in (a) and (b) are different.

Problem 3 The tap-input vector of a transversal filter is defined by

u(n) = α(n)s(ω) + v(n)
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where

s(ω) = [1, e−jω, . . . , e−jω(M−1)]T

v(n) = [v(n), v(n− 1), . . . , v(n−M + 1)]T

i.e., u(n−k) = α(n)·e−jkω+v(n−k) for k = 0, . . . ,M−1. For the tap-input vector at a given

time n, α(n) is a complex random variable with zero mean and variance σ2α = E[|α(n)|2],

and α(n) is uncorrelated with the w.s.s. process v(n).

(a) Determine the correlation matrix of the tap-input vector u(n).

(b) Suppose that the desired response d(n) is uncorrelated with u(n). What is the value of

the tap-weight vector of the corresponding Wiener filter?

(c) Suppose that the variance σ2α is zero, and the desired response is defined by

d(n) = v(n− k)

where 0 ≤ k ≤ M − 1. What is the new value of the tap-weight vector of the Wiener

filter?

(d) Determine the tap-weight vector of the Wiener filter for a desired response defined by

d(n) = α(n)e−jwτ

where τ is a prescribed delay.

Problem 4 In this problem we explore an application of Wiener filtering to radar. The sampled

form of the transmitted radar signal is A0e
jω0n where ω0 is the transmitted angular frequency,

and A0 is the transmitted complex amplitude. The received signal is

u(n) = A1e
jω1n + v(n)

where |A1| < |A0| and ω1 differs from ω0 by virtue of the Doppler shift produced by the

motion of a target of interest, and white noise {v(n)} is uncorrelated with A1.

(a) Show that the correlation matrix of the time series {u(n)}, made up of M elements, may

be written as

R = σ2vI + σ21s(w1)s
H(w1)
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where σ2v is the variance of the zero-mean white white noise v(n), and

σ21 = E[|A1|2]

s(ω1) = [1, e−jω1 , . . . , e−jω1(M−1)]T

And what is R−1?

(b) The time series {u(n)} is applied to an M -tap Wiener filter with the cross-correlation

vector p between {u(n)} and the desired response d(n) preset to

p = σ20 s(ω0)

where

σ20 = E[|A0|2]

s(ω0) = [1, e−jω0 , . . . , e−jω0(M−1)]T

Derive an expression for the tap-weight vector of the Wiener filter.

Hint: You may want to use the matrix inversion lemma:

(B−1 + CD−1CH)−1 = B −BC(D + CHBC)−1CHB.

Problem 5 A linear array consists of M uniformly spaced sensors. The individual sensor outputs

are weighted and then summed, producing the output

e(n) =

M∑
k=1

w∗
kuk(n)

where uk(n) is the output of sensor k at time n, and wk is the associated weight. The weights

are chosen to minimize the mean-square value of e(n), subject to the constraint

wHs = 1

where s is a prescribed steering vector. By using the method of Lagrange multipliers, show

that the optimum value of the vector w is

w0 =
R−1s

sHR−1s

where R is the spatial correlation matrix of the linear array.
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Hint: Construct a Lagrange function that is real valued. Let f(w) be the expression of the con-

straint. You may construct a real valued version of the constraint expression by Re{2f(w)}

= f(w) +f∗(w). Recall we discussed in lecture that when taking partial derivative, consider

w and w∗ as independent parameters.

4


