
ECE 792-41 Homework 5

Material Covered: Steepest Descent, Newton’s Method,

Least Mean-Squares (LMS)

Problem 1 (Alternative derivation for steepest-descent) In this problem, we explore another way

of deriving the steepest-descent algorithm. The inverse of a positive-definite matrix may be

expanded in a series as

R−1 = µ

∞∑
k=0

(I− µR)k

where I is the identity matrix and µ is a positive constant. To ensure that the series converges,

the constant µ must lie inside the range 0 < µ < 2
λmax

, where λmax is the largest eigenvalue

of the matrix R. By using this series expansion of the inverse of the correlation matrix in

the Wiener–Hopf equation, develop the recursion

w(n+ 1) = w(n) + µ [p−Rw(n)]

where

w(n) = µ
n−1∑
k=0

(I− µR)kp

is the approximation to the Wiener solution for the tap-weight vector.

Problem 2 (Modified LMS) The zero-mean output d(n) of an unknown real-valued system is

represented by the multiple linear regression model d(n) = wT
0 u(n) + v(n) where w0 is the

unknown but fixed parameter vector of the model, u(n) is the input vector (regressor), and

v(n) is the sample value of an immeasurable white-noise process of zero mean and variance

σ2v . This real-valued system is tracked by a modified LMS algorithm, in which the tap-weight

vector w(n) of the transversal filter is chosen so as to minimize the index of performance

J(w,K) = E[e2K(n)], K ∈ Z+.

(a) By using the instantaneous gradient vector, show that the new adaptation rule for the

corresponding estimate of the tap-weight vector is

ŵ(n+ 1) = ŵ(n) + µKu(n)e2K−1(n)

where µ is the step-size parameter and e(n) = d(n)−wT (n)u(n) is the estimation error.
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(b) Assume that the weight-error vector

ε(n) = w0 − ŵ(n)

is close to zero and that v(n) is independent of u(n). Show that

E[ε(n+ 1)] =
(
I− µK(2K − 1)E[v2(K−1)(n)]R

)
E[ε(n)]

where R is the correlation matrix of the input vector u(n).

(c) Show that the modified LMS algorithm described in part (a) coverages in the mean value

if the step-size parameter µ satisfies the condition

0 < µ <
2

K(2K − 1)E[v2(K−1)(n)]λmax

where λmax is the largest eigenvalue of matrix R.

(d) For K = 1, show that the results given in parts (a), (b), and (c) reduce to those of the

conventional LMS algorithm.

Problem 3 (Leaky LMS) Consider the time-varying cost function

J(n) = |e(n)|2 + α‖w(n)‖2

where w(n) is the tap-weight vector of a transversal filter, e(n) is the estimation error, and

α is a constant. As usual, e(n) = d(n)−wH(n)u(n) where d(n) is the desired response and

u(n) is the tap-input vector. In the leaky LMS algorithm, the cost function J(n) is minimized

w.r.t. the weight vector w(n).

(a) Show that the time update for the tap-weight vector ŵ(n) is defined by

ŵ(n+ 1) = (1− µα)ŵ(n) + µu(n)e∗(n).

(b) Using the small-step-size theory, show that

lim
n→∞

E[ŵ(n)] = (R + αI)−1p

where R is the correlation matrix of the tap inputs and p is the cross-correlation vector

between the tap inputs and the desired response. What is the condition for the algorithm

to converge in the mean value?
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(c) How would you modify the tap-input vector in the conventional LMS algorithm to obtain

the equivalent result described in part (a)?

Problem 4 The convergence ratio of an adaptive algorithm is defined in terms of the weight-error

vector by

η(n) =
E[‖ε(n+ 1)‖2]
E[‖ε(n)‖2]

Show that, for small n, the convergence ratio of the LMS algorithm for stationary inputs is

given by

η(n) ≈ (1− µσ2u)2, n small.

Assume that the correlation matrix of the tap-input vector u(n) is approximately equal to

σ2uI.

Problem 5 (Adaptive step size) In much of the material presented on LMS filters, we focused

attention on the use of a fixed step-size parameter. In this problem, we consider an adap-

tive LMS filter in which the step size is adaptively controlled. The motivation for such a

modification is to improve the convergence behavior of the LMS filter.

(a) Define the gradient vector

γ(n) =
∂ŵ(n)

∂µ(n)

where ŵ(n) is the weight vector estimated by an LMS filter with time-varying step-size

parameter µ(n). Starting with the instantaneous cost function

J(n) =
1

2
|e(n)|2

where e(n) is the error signal produced by the LMS filter, show that

γ(n) =
[
I− µ(n)u(n− 1)uH(n− 1)

]
γ(n− 1) + u(n− 1)e∗(n− 1)

where I is the identity matrix.

(b) Formulate the LMS algorithm with time-varying step size by the pair of update equations

ŵ(n+ 1) = ŵ(n) + µ(n)u(n)e∗(n)

and

µ(n) = µ(n− 1) + ρe(n)γH(n)u(n)
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where γ(n) is as defined in part (a) and ρ a small positive constant that controls the

adaptation of µ(n).

Problem 6 Consider an AR process u(n) defined by the difference equation

u(n) = −a1u(n− 1)− a2u(n− 2) + v(n)

where v(n) is an additive white noise of zero mean and variance σ2v . Assume a1 = 0.1 and

a2 = −0.8.

(a) Calculate the noise variance σ2v such that the AR process has unit variance. Generate

different realizations of the process u(n).

(b) Given the input u(n), an LMS filter of length M = 2 is used to estimate the unknown

AR parameters a1 and a2. The step-size parameter µ is assigned the value 0.05. Justify

the use of this design value in the application of the small-step-size theory.

(c) For one realization of the LMS filter, compute the prediction error

f(n) = u(n)− û(n)

and the two tap-weight errors

εi(n) = −ai − ŵi(n), i = 1, 2.

Using power spectral plots of f(n), ε1(n), and ε2(n), show that f(n) behaves as white

noise, whereas ε1(n) and ε2(n) behave as low-pass processes.

(d) Compute the ensemble-average learning curve of the LMS filter by averaging the squared

value of the prediction error f(n) over an ensemble of 100 different realizations of the

filter.

(e) Using the small-step-size theory, compute the theoretical learning curve of the LMS filter

and compare your result against the measured result of part (d).

Problem 7 (Steepest descent method and Newton’s method) Complete Problem 1 in this url:

http://www.cs.umd.edu/~elman/660.12/hw4/hw4.pdf
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