Model Selection and Assessment

Chau-Wai Wong

Electrical & Computer Engineering North Carolina State University

Contact: chauwai.wong@ncsu.edu. Updated: March 27, 2019.

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Model Selection Definition

Model Selection: Choose the best model out of a set of candidate models.

Model Assessment: Having chosen a final model, estimating its prediction/generalization error on new data.

Readings: Chapter 7 of Hastie et al.

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Model Selection Examples

(1) Time series:

$$\mathcal{S}_1 = \{ AR(1), AR(2), AR(3), ... \}$$

(2) Linear regression:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + e_i, \quad i = 1, \dots, 50.$$
$$S_2 = \{(\beta_0) \neq \underline{0}, (\beta_0, \beta_1) \neq \underline{0}, (\beta_0, \beta_2) \neq \underline{0}, \dots, (\beta_0, \dots, \beta_p) \neq \underline{0}\}$$

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Model Selection Examples (cont'd)

(3) Harmonic model:

$$y(n) = \sum_{i=0}^{p} A_i e^{j(\omega_i n + \phi)} + v(n), \quad n = 0, \dots, 999,$$

where $v(n) \sim N(0, \sigma_v^2)$, $\phi \sim \text{Uni}(0, 2\pi]$, and (A_i, ω_i) are fixed but unknown parameters.

$$\mathcal{S}_3 = \left\{ (A_0) \neq \underline{0}, (A_0, A_1) \neq \underline{0}, \dots, (A_0, \dots, A_p) \neq \underline{0} \right\}$$

Note that $|\mathcal{S}_2| = |\mathcal{S}_3| = 2^{p+1} - 1$.

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Model Selection Criterion: Generalization Performance

A learning method's **generalization performance** is reflected by its prediction capability assessed using **new/test data** drawn from the same population where the data used for training were drawn.

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Model Selection in Ideal, Data-Rich Scenario

Split data into two three sets:

Training	Validation	Test
----------	------------	------

- Fit *K* candidate models to the training data.
- Evaluate the prediction errors using validation data for all models. Select the model with the smallest prediction error. This is called the "validation error."
- Test the selected model using the test data and evaluate the prediction error. This is called the "generalization/test error."

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Model Selection in Practical, Data-Limited Scenario

Strategy	Method
Sample reuse	Crossvalidation, Bootstrap
Analytically approximate	AIC, BIC, MDL, etc.
test/generalization step	

 Generalization Performance

 Model Selection
 Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Convention: lower vs. upper cases—deterministic vs. random; upper case & bold—deterministic matrix; Tilde below—vector.

Notations: y_i response, x_i collection of predictors for y_i , $\mathcal{T} = \{(x_i, y_i), i = 1, ..., N\}$ deterministic data set, $\hat{f}_{\mathcal{T}}(\cdot)$ or $\hat{y}_{\mathcal{T}}(\cdot)$ prediction function based on/conditioned on \mathcal{T} , $L(\cdot, \cdot)$ loss function, e.g., $L(a, b) = (a - b)^2$ or L(a, b) = |a - b|.

Examples when the prediction function is linear:

$$\underbrace{\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}}_{\underbrace{y}} = \underbrace{\begin{bmatrix} & x_1^T \\ & \vdots \\ & x_N^T \end{bmatrix}}_{\mathbf{x}} \beta + \underline{e};$$

$$\hat{f}_{\mathcal{T}}(\mathbf{x}_{0}) = \underset{\sim}{\overset{T}{\overset{T}{\overset{}}}} \hat{\beta}_{\mathcal{T}} = \underset{\sim}{\overset{T}{\overset{T}{\overset{}}}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y},$$

or
$$= \underset{\sim}{\overset{T}{\overset{T}{\overset{}}}} \hat{\beta}_{\mathcal{T}} = \underset{\sim}{\overset{T}{\overset{T}{\overset{}}}} (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y},$$

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Definitions of Test and Training Errors

Generalization/Test error

$$\operatorname{Err}_{\mathcal{T}} = \mathbb{E} \left[L(Y^0, \hat{f}_{\mathcal{T}}(X^0) | \mathcal{T} \right]$$
 (extra-sample error).

Expected generalization/test error

$$\mathsf{Err} = \mathbb{E}[\mathsf{Err}_{\mathcal{T}}] = \mathbb{E}\Big[\mathbb{E}\big[L(Y^0, \hat{f}_{\mathcal{T}}(X^0)|\mathcal{T}]\big] = \mathbb{E}\big[L(Y^0, \hat{f}_{\mathcal{T}}(X^0)].$$

Training error

$$\overline{\operatorname{err}} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}_{\mathcal{T}}(\underline{x}_i)).$$

Question: How can you modify the definition of training error to define validation error?

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Cross-Validation Motivation & Example

Cross-Validation (CV), sometimes called rotation estimation, or out-of-sample testing.

Data Reuse: Each segment will act as the validation set once, while data in the remaining K - 1 segments are used to calculate a prediction model.

K-Fold CV, typical choice K = 5 or 10. A random partition example when K = 5:

A training-validation split when the 4th segment is acting as the validation set.

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Cross-Validation Error

Cross-Validation error

$$CV(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{-\kappa(i)}(\underline{x}_i)),$$

where $\kappa : \{1, \dots, N\} \mapsto \{1, \dots, K\}$ is a random partition function.

All data points, $(\underline{x}_i, y_i), i = 1, ..., N$, or all segments, contribute to the CV error.

CV error is used to approximate the generalization error.

Note: $CV(\hat{f})$ estimates the expected generalization error, Err, better than the conditional generalization error, $Err_{\mathcal{T}}$. (See Section 7.12 for more details.)

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

LOOCV and One SE Rule

Leave-One-Out Cross-Validation (LOOCV): A special case of CV when K = N. Approximately unbiased but has large variance as the training datasets are almost the same.

"One standard error rule": Choose the most parsimonious model. Example: CV error for linear regression on polynomials

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Analytic Approximations

Observation: Training error $\overline{\text{err}} < \text{Err}_{\mathcal{T}}$, because the fitted model $\hat{f}_{\mathcal{T}}$ has adapted to data \mathcal{T} .

Can we find an correction term and add it to the training error to approximate the generalization error, i.e., $\overline{err} + \Box = Err_T$?

In-sample prediction error

$$\mathsf{Err}_{\mathsf{in}} = \frac{1}{N} \sum_{k=1}^{N} \mathbb{E} \big[L(Y_k^0, \hat{f}_{\mathcal{T}}(\underline{x}_k)) | \mathcal{T} \big],$$

which is defined similarly to $\operatorname{Err}_{\mathcal{T}}$ but uses $\{(\underline{x}_i, Y_i^0)\}_{i=1}^N$ instead of $\{(X_i^0, Y_i^0)\}_{i=1}^\infty$.

 $\operatorname{Err}_{in} \approx \operatorname{Err}_{\mathcal{T}}$ if (1) \underline{x}_i is uniformly sampled from population, and (2) N is large.

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

The Correction Term: Optimism

Optimism

$$op \stackrel{\mathsf{def}}{=} \mathsf{Err}_{\mathsf{in}} - \overline{\mathsf{err}}.$$

Expected optimism

$$\omega \stackrel{\text{def}}{=} \mathbb{E}[\mathsf{op}|\{\underline{x}_i\}_{i=1}^N].$$

Example: $\omega = \frac{2}{N} \sum_{i=1}^{N} \text{cov}(\hat{y}_i, y_i)$. The harder we fit, the greater the covariance, and the more op.

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Analytic Form of Optimism

$$\mathbb{E}[\mathsf{Err}_{\mathsf{in}}|\{\underline{x}_i\}] = \overline{\mathsf{err}} + \frac{2}{N} \sum_{i=1}^{N} \mathsf{cov}(\hat{y}_i, y_i).$$

If \hat{y}_i is from linear model with *d* predictors, we have

$$\mathbb{E}[\mathsf{Err}_{\mathsf{in}}|\{\underline{x}_i\}] = \overline{\mathsf{err}} + 2 \cdot \frac{d}{N} \cdot \sigma_e^2.$$

Try to validate the above expression for parameters d, N, and σ_e^2 using a linear regression model as a special case.

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Analytic Approximations

Analytic Models: Akaike information criterion (AIC), Bayesian information criterion (BIC), Minimum description length (MDL).

 \star One way to estimate the in-sample prediction error $\mathsf{Err}_{\mathsf{in}}$ is to estimate the optimism and then add it to the training error $\overline{\mathsf{err}}$:

AIC or
$$C_p = \overline{\text{err}} + 2 \cdot \frac{d}{N} \cdot \hat{\sigma}_e^2$$

BIC = $\frac{N}{\hat{\sigma}_e^2} \Big[\overline{\text{err}} + (\log N) \cdot \frac{d}{N} \cdot \hat{\sigma}_e^2 \Big]$

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Detailed Derivations

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Evaluating $\mathbb{E}\left[\mathsf{Err}_{\mathsf{in}}|\{\underline{x}_i\}\right]$

$$\mathbb{E}\left[\mathsf{Err}_{\mathsf{in}}|\{\underset{\sim}{x_{i}}\}\right] = \mathbb{E}\left[\frac{1}{N}\sum_{k=1}^{N}\mathbb{E}\left[L(Y_{k}^{0},\hat{f}_{\mathcal{T}}(\underline{x}_{k}))|\mathcal{T}\right]\Big|\{\underset{\sim}{x_{i}}\}\right]$$
$$= \frac{1}{N}\sum_{k=1}^{N}\mathbb{E}\left[\mathbb{E}\left[L(Y_{k}^{0},\hat{f}_{\mathcal{T}}(\underline{x}_{k}))|\{\underset{\sim}{x_{i}}\},\{y_{i}\}\right]\Big|\{\underset{\sim}{x_{i}}\}\right]$$
$$= \frac{1}{N}\sum_{k=1}^{N}\mathbb{E}\left[L(Y_{k}^{0},\hat{f}_{\mathcal{T}}(\underline{x}_{k}))|\{\underset{\sim}{x_{i}}\}\right]$$
$$\stackrel{\text{def}}{=} \frac{1}{N}\sum_{k=1}^{N}\mathsf{Err}(\underset{\sim}{x_{k}})$$

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

The Bias-Variance Decomposition for $Err(x_k)$

. . .

Chau-Wai Wong ECE792-41 Lecture

Generalization Performance Sample Reuse (Cross-Validation, Bootstrap) Analytic approximation (AIC, BIC, MDL)

Special Case for the Linear Regression Model

Linear model $\underline{y} = \mathbf{X}\beta + \underline{e}$

. . .