Model Selection and Assessment

Chau-Wai Wong

Electrical & Computer Engineering North Carolina State University

Contact: chauwai.wong@ncsu.edu. Updated: March 27, 2019.

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Model Selection Definition

Model Selection: Choose the best model out of a set of candidate models.

Model Assessment: Having chosen a final model, estimating its prediction/generalization error on new data.

Readings: Chapter 7 of Hastie et al.

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Model Selection Examples

(1) Time series:

$$
\mathcal{S}_1 = \{AR(1), AR(2), AR(3), ...\}
$$

(2) Linear regression:

$$
y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + e_i, \quad i = 1, \dots, 50.
$$

$$
S_2 = \{ (\beta_0) \neq 0, (\beta_0, \beta_1) \neq 0, (\beta_0, \beta_2) \neq 0, \dots, (\beta_0, \dots, \beta_p) \neq 0 \}
$$

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Model Selection Examples (cont'd)

(3) Harmonic model:

$$
y(n) = \sum_{i=0}^{p} A_i e^{j(\omega_i n + \phi)} + v(n), \quad n = 0, \ldots, 999,
$$

where $\nu(n) \sim {\sf N}(0, \sigma^2_{\rm v}),~ \phi \sim {\sf Uni}(0, 2\pi],$ and $({\sf A}_i, \omega_i)$ are fixed but unknown parameters.

$$
S_3 = \{(A_0) \neq \mathcal{Q}, (A_0, A_1) \neq \mathcal{Q}, \dots, (A_0, \dots, A_p) \neq \mathcal{Q}\}
$$

Note that $|S_2| = |S_3| = 2^{p+1} - 1$.

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Model Selection Criterion: Generalization Performance

A learning method's generalization performance is reflected by its prediction capability assessed using new/test data drawn from the same population where the data used for training were drawn.

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Model Selection in Ideal, Data-Rich Scenario

Split data into two three sets:

- \bullet Fit K candidate models to the training data.
- ² Evaluate the prediction errors using validation data for all models. Select the model with the smallest prediction error. This is called the "validation error."
- **3** Test the selected model using the test data and evaluate the prediction error. This is called the "generalization/test error."

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Model Selection in Practical, Data-Limited Scenario

[Model Selection](#page-1-0) [Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Convention: lower vs. upper cases—deterministic vs. random; upper case & bold—deterministic matrix; Tilde below—vector.

Notations: y_i response, x_i collection of predictors for y_i , $\mathcal{T} = \{(\underline{x}_i, y_i), i = 1, \ldots, N\}$ deterministic data set, $\hat{f}_{\mathcal{T}}(\cdot)$ or $\hat{y}_{\mathcal{T}}(\cdot)$ prediction function based on/conditioned on $\mathcal{T},$ $L(\cdot, \cdot)$ loss function, e.g., $L(a, b) = (a - b)^2$ or $L(a, b) = |a - b|$.

Examples when the prediction function is linear:

$$
\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix} \beta + \underline{e},
$$

$$
\hat{f}_{\mathcal{T}}(\mathbf{x}_0) = \mathbf{x}_0^T \hat{\beta}_{\mathcal{T}} = \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y},
$$

or =
$$
\mathbf{x}_0^T \tilde{\beta}_{\mathcal{T}} = \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}.
$$

Chau-Wai Wong e [ECE792-41 Lecture](#page-0-0) 8 / 20

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Definitions of Test and Training Errors

Generalization/Test error

$$
\mathsf{Err}_{\mathcal{T}} = \mathbb{E}\big[L(Y^0, \hat{f}_{\mathcal{T}}(\underline{X}^0)|\mathcal{T}\big] \text{ (extra-sample error)}.
$$

e

Expected generalization/test error

$$
\mathsf{Err} = \mathbb{E}[\mathsf{Err}_{\mathcal{T}}] = \mathbb{E}\Big[\mathbb{E}\big[L(Y^0, \hat{f}_{\mathcal{T}}(\underline{X}^0)|\mathcal{T}\big]\Big] = \mathbb{E}\big[L(Y^0, \hat{f}_{\mathcal{T}}(\underline{X}^0)\big].
$$

Training error

$$
\overline{\text{err}} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}_{\mathcal{T}}(\underline{x}_i)).
$$

Question: How can you modify the definition of training error to define validation error?

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Cross-Validation Motivation & Example

Cross-Validation (CV), sometimes called rotation estimation, or out-of-sample testing.

Data Reuse: Each segment will act as the validation set once, while data in the remaining $K - 1$ segments are used to calculate a prediction model.

K-Fold CV, typical choice $K = 5$ or 10. A random partition example when $K = 5$:

A training-validation split when the 4th segment is acting as the validation set.

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Cross-Validation Error

Cross-Validation error

$$
CV(\hat{f}) = \frac{1}{N} \sum_{i=1}^N L(y_i, \hat{f}^{-\kappa(i)}(\underline{x}_i)),
$$

where $\kappa : \{1, \ldots, N\} \mapsto \{1, \ldots, K\}$ is a random partition function.

All data points, $(\underline{x}_i, y_i), i = 1, \ldots, N$, or all segments, contribute to the CV error.

CV error is used to approximate the generalization error.

Note: $CV(\hat{f})$ estimates the expected generalization error, Err, better than the conditional generalization error, Err τ . (See Section 7.12 for more details.)

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

LOOCV and One SE Rule

Leave-One-Out Cross-Validation (LOOCV): A special case of CV when $K = N$. Approximately unbiased but has large variance as the training datasets are almost the same.

"One standard error rule": Choose the most parsimonious model. Example: CV error for linear regression on polynomials

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Analytic Approximations

Observation: Training error \overline{err} \lt Err τ , because the fitted model $\hat{f}_{\mathcal{T}}$ has adapted to data $\mathcal{T}.$

Can we find an correction term and add it to the training error to approximate the generalization error, i.e., $\overline{err} + \Box = \text{Err} \tau$?

In-sample prediction error

$$
\text{Err}_{\text{in}} = \frac{1}{N} \sum_{k=1}^{N} \mathbb{E}\big[L(Y_k^0, \hat{f}_{\mathcal{T}}(\underline{x}_k)) | \mathcal{T}\big],
$$

which is defined similarly to Err $_\mathcal{T}$ but uses $\{(\underline{x}_i,Y^0_i)\}_{i=1}^N$ instead of $\{(X_i^0, Y_i^0)\}_{i=1}^{\infty}$.

Err $_{\sf in}$ \approx Err $_{\cal T}$ if (1) $_{\chi_{\it i}}$ is uniformly sampled from population, and (2) N is large.

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

The Correction Term: Optimism

Optimism

$$
\mathsf{op} \stackrel{\mathsf{def}}{=} \mathsf{Err}_{\mathsf{in}} - \overline{\mathsf{err}}.
$$

Expected optimism

$$
\omega \stackrel{\text{def}}{=} \mathbb{E}[\text{op}|\{\underline{x}_i\}_{i=1}^N].
$$

Example: $\omega = \frac{2}{\Lambda}$ $\frac{2}{N}\sum_{i=1}^N \mathsf{cov}(\hat{y}_i,y_i).$ The harder we fit, the greater the covariance, and the more op.

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Analytic Form of Optimism

$$
\mathbb{E}[\mathsf{Err}_{\mathsf{in}}|\{\underline{x}_i\}] = \overline{\mathsf{err}} + \frac{2}{N}\sum_{i=1}^N \mathsf{cov}(\hat{y}_i, y_i).
$$

If \hat{y}_i is from linear model with d predictors, we have

$$
\mathbb{E}[\mathsf{Err}_{\mathsf{in}}|\{\underline{x}_i\}]=\overline{\mathsf{err}}+2\cdot\frac{d}{N}\cdot\sigma_e^2.
$$

Try to validate the above expression for parameters d , N , and σ_{e}^{2} using a linear regression model as a special case.

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Analytic Approximations

Analytic Models: Akaike information criterion (AIC), Bayesian information criterion (BIC), Minimum description length (MDL).

 \star One way to estimate the in-sample prediction error Err_{in} is to estimate the optimism and then add it to the training error err:

$$
AIC \text{ or } C_p = \overline{err} + 2 \cdot \frac{d}{N} \cdot \hat{\sigma}_e^2
$$

$$
BIC = \frac{N}{\hat{\sigma}_e^2} \left[\overline{err} + (\log N) \cdot \frac{d}{N} \cdot \hat{\sigma}_e^2 \right]
$$

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Detailed Derivations

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Evaluating $\mathbb{E}\big[\mathsf{Err}_{\mathsf{in}}|\{\mathsf{x}_i\}\big]$

$$
\mathbb{E}\left[\text{Err}_{\text{in}}|\{\underline{x}_{i}\}\right] = \mathbb{E}\left[\frac{1}{N}\sum_{k=1}^{N}\mathbb{E}\left[L(Y_{k}^{0},\hat{f}_{\mathcal{T}}(\underline{x}_{k}))|\mathcal{T}\right]\Big|\{\underline{x}_{i}\}\right]
$$

$$
= \frac{1}{N}\sum_{k=1}^{N}\mathbb{E}\left[\mathbb{E}\left[L(Y_{k}^{0},\hat{f}_{\mathcal{T}}(\underline{x}_{k}))|\{\underline{x}_{i}\},\{y_{i}\}\right]\Big|\{\underline{x}_{i}\}\right]
$$

$$
= \frac{1}{N}\sum_{k=1}^{N}\mathbb{E}\left[L(Y_{k}^{0},\hat{f}_{\mathcal{T}}(\underline{x}_{k}))|\{\underline{x}_{i}\}\right]
$$

$$
\stackrel{\text{def}}{=} \frac{1}{N}\sum_{k=1}^{N}\text{Err}(\underline{x}_{k})
$$

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

The Bias-Variance Decomposition for $\mathsf{Err}(\underline{\mathsf{x}}_k)$

...

[Generalization Performance](#page-4-0) [Sample Reuse \(Cross-Validation, Bootstrap\)](#page-9-0) [Analytic approximation \(AIC, BIC, MDL\)](#page-12-0)

Special Case for the Linear Regression Model

Linear model $y = \mathsf{X}\beta + \underline{\varepsilon}$

...

Chau-Wai Wong [ECE792-41 Lecture](#page-0-0) 20 / 20