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Summary of Related Readings on Part-III

Overview    Haykins  1.16, 1.10

3.1  Non-parametric method

Hayes  8.1;    8.2  (8.2.3, 8.2.5);    8.3

3.2  Parametric method

Hayes  8.5,  4.7;    8.4

3.3  Frequency estimation

Hayes 8.6

Review 

– On DSP and Linear algebra:  Hayes 2.2, 2.3

– On probability and parameter estimation:  Hayes 3.1 – 3.2
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Spectrum Estimation: Background

 Spectral estimation: determine the power distribution in 
frequency of a w.s.s. random process

– E.g., “Does most of the power of a signal reside at low or high 

frequencies?” “Are there resonances in the spectrum?”

 Applications:

– Needs of spectral knowledge in spectrum domain non-causal 

Wiener filtering, signal detection and tracking, beamforming, etc.

– Wide use in diverse fields: radar, sonar, speech, biomedicine, 

geophysics, economics, …

 Estimating p.s.d. of a w.s.s. process 
 estimating autocorrelation at all lags
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Spectral Estimation: Challenges

 A w.s.s process is infinitely long. (Why?) When a limited 
amount of observation data is available:

– Can’t get r(k) for all k and/or may have inaccurate estimate of r(k)

– Scenario-1: transient measurement (earthquake, volcano, …) 

– Scenario-2: constrained to short period to ensure (approx.) 

stationarity in speech processing

 Observed data may have been corrupted by noise
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Spectral Estimation:  Major Approaches

 Nonparametric methods

– No assumptions on the underlying model for the data

– Periodogram and its variations (averaging, smoothing, …)

– Minimum variance method

 Parametric methods

– ARMA, AR, MA models

– Maximum entropy method

 Frequency estimation (noise subspace methods)

– For harmonic processes that consist of a sum of sinusoids or 
complex-exponentials in noise

 High-order statistics
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Example of Speech Spectrogram

Figure 3 of SPM May’98 Speech Survey
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Section 3.1  Classical Nonparametric Methods

As we can take DTFT on a specific realization of a random process,
What is the relation between the DTFT of a specific signal and the 
p.s.d. of the random process?
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Recall: given a w.s.s. process {x[n]} with

The power spectral density (p.s.d.) is defined as
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Ensemble Average of Squared Fourier Magnitude

 p.s.d. can be related to the ensemble average of 

the squared Fourier magnitude |X()|2
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i.e., take DTFT on (2M+1) samples and 

examine normalized squared magnitude 

Note: for each frequency 𝑓,  𝑃𝑀 𝑓 is a random variable
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Ensemble Average of  𝑃𝑀 𝑓
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P.S.D. and Ensemble Fourier Magnitude
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Smeared P.S.D. for Finite Length Data
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50 realizations overlaid

Nonparametric spectral estimation [13]

Frequency Resolution Improves as N increases

averaged

Signal length N = 40

Signal length N = 64

[Hayes Fig. 8.8]  

Frequency resolution: 

O(1/N)
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3.1.1  Periodogram Spectral Estimator
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(1) This estimator is based on (**)

Given an observed data set {x[0], x[1], …, x[N-1]},

the periodogram is defined as
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An Equivalent Expression of Periodogram

– The quality of the estimates for the higher lags of r(k) may be 
poorer since they involve fewer terms of lag products in the 
averaging operation

– Autocorrelation sequence is zeroed out for |k| ≥ N.

Exercise: Prove using the definition of the periodogram estimator.
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(2) Filter Bank Interpretation of Periodogram

– Impulse response of the filter h[n]:  a windowed version of a 

complex exponential
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Frequency Response of h[n]

 H(f) is a bandpass filter

– Center frequency is f0

– 3dB bandwidth  1/N
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Periodogram: Filter Bank Perspective

 Can view the periodogram as an estimator of power 
spectrum that has a built-in filterbank

– The filter bank ~ a set of bandpass filters

– The estimated p.s.d. for each frequency f0 is the power of one 

output sample of the bandpass filter centering at f0
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E.g. White Gaussian Process

The random fluctuation (measured by variance) of the periodogram

estimator does not decrease with increasing N

 periodogram is an inconsistent estimator

[Lim/Oppenheim  Fig.2.4]  

Periodogram of zero-mean white Gaussian noise 

using N-point data record: N = 128, 256, 512, 1024
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(3) How Good is Periodogram for Spectral Estimation?

 Estimation: Tradeoff between bias and variance

 For white Gaussian process, one can show that at fk = k/N
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Performance of Periodogram: Summary

 The periodogram for white Gaussian process is an 

unbiased estimator but not consistent

– The variance does not decrease with increasing data length

– Its standard deviation is as large as the mean (equal to the quantity 
to be estimated)

 Reasons for the poor estimation performance

– Given N real data points, the # of unknown parameters {P(f0), … 
P(fN/2)} we try to estimate is N/2, i.e., proportional to N

 Similar conclusions can be drawn for processes with 
arbitrary p.s.d. and arbitrary frequencies

– Asymptotically unbiased (as N goes to infinity) but inconsistent
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3.1.2  Averaged Periodogram

 One solution to the variance problem of periodogram

– Average K periodograms computed from K sets of data records
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Performance of Averaged Periodogram

– Assume the K sets of data records are mutually uncorrelated.

– For a white Gaussian input signal,  𝑃AVPER
(𝑚)

𝑓 ,𝑚 = 0,… , 𝐿 −

1 are i.i.d., and one can verify that

– If L is fixed, K and N are allowed to go to infinite, then 
 𝑃AVPER 𝑓 is a consistent estimator.
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Practical Averaged Periodogram

 Usually we partition an available data sequence of length N

into K non-overlapping blocks, each block has length L (i.e., N=KL):

 Since the blocks are contiguous, the K sets of data records 

may not be completely uncorrelated

– Thus the variance reduction factor is in general less than K

 Periodogram averaging is also known as Bartlett’s method
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Averaged Periodogram for Fixed Data Size

 Given a data record of fixed length N, will the result continue 
improving if we segment it into more and more subrecords?

We examine for a real-valued stationary process:
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Mean of Averaged Periodogram
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 Biased estimator (both averaged and regular periodogram)

– The convolution with the window function w[k] lead to the mean of 
the averaged periodogram being smeared from the true p.s.d.

 Asymptotically unbiased as L  

– To avoid the smearing, the window length L must be large enough so 
that the narrowest peak in P(f ) can be resolved

 Fixing N = KL, the choice of K leads to a tradeoff between 
bias and variance

Small K => better resolution (smaller smearing/bias) but larger variance

NCSU ECE792-41 Statistical Methods for Signal Analytics Nonparametric spectral estimation [27]

Statistical Properties of Averaged Periodogram
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Non-parametric Spectrum Estimation:  Recap

 Periodogram 

– Motivated by relation between p.s.d. and squared magnitude of DTFT 

of a finite-size data record

– Variance: won’t vanish as data length N goes infinity: “inconsistent”

– Mean:  asymptotically unbiased w.r.t. data length N in general

 equivalent to apply triangular window to autocorrelation function

(windowing in time gives smearing/smoothing in freq. domain)

 unbiased for white Gaussian  (flat spectrum)

 Averaged periodogram

– Reduce variance by averaging K sets of data record of length L each

– Small L increases smearing/smoothing in p.s.d. estimate thus higher 

bias     equiv. to triangular windowing to autocorrelation sequence

 Windowed periodogram:  generalize to other symmetric windows
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Case Study on Non-parametric Methods

 Test case: a process consists of narrowband components 
(sinusoids) and a broadband component (AR)

–

– N = 32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric 
spectral estimators

(Fig.2.17 from Lim/Oppenheim book)
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3.1.3  Periodogram with Windowing

 Review and Motivation

– The higher lags of r(k), the poorer estimates since the estimates 
involve fewer terms of lag products in the averaging operation

 Solution: weigh the higher lags less 

– Trade variance with bias
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Windowing

 Use a window function to weigh the higher lags less

 Effect:  periodogram smoothing 

– Windowing in time  Convolution/filtering the periodogram

– Also known as the Blackman-Tukey method
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Common Lag Windows

 Much of the art in non-parametric spectral estimation is in 
choosing an appropriate window (both in type and length)

Table 2.1 common lag window  

(from Lim-Oppenheim book)
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• Hints on proving

the non-negative 

definiteness: using 

 𝑟1 𝑘 to construct 

correlation matrix

NCSU ECE792-41 Statistical Methods for Signal Analytics Nonparametric spectral estimation [34]

Discussion:  Estimate r(k) via Time Average

 Normalizing the sum of (N−k) pairs 

by a factor of 1/N ?   v.s.  by a factor of 1/(N−k) ?

Biased (low variance) Unbiased (may not non-neg. definite)
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3.1.4 Minimum Variance Spectral Estimation (MVSE)

 Recall:  filter bank perspective of periodogram

– The periodogram can be viewed as estimating the p.s.d. by 

forming a bank of narrowband filters with sinc-like response

– The high sidelobe can lead to “leakage” problem: 

 large output power due to p.s.d. outside the band of interest

 MVSE designs filters to minimize the leakage from out-of-
band spectral components

– Thus the shape of filter is dependent on the frequency of interest

and data adaptive

(unlike the identical filter shape for periodogram)

– MVSE is also referred to as the Capon spectral estimator
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Main Steps of MVSE Method

1. Design a bank of bandpass filters Hi(f) with center 
frequency fi  so that

– Each filter rejects the maximum amount of out-of-band power

– And passes the component at frequency fi without distortion

2. Filter the input process {x[n]} with each filter in the filter 
bank and estimate the power of each output process

3. Set the power spectrum estimate at frequency fi to be the 
power estimated above divided by the filter bandwidth
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Formulation of MVSE

The MVSE designs a filter H(f) for each 

frequency of interest f0

minimize the output power

subject to

(i.e., to pass the components at f0 w/o distortion)

1)( 0 fH



  
 




0

)1(

0

)1(

2

1

2

1

)(2)(][][
Nk Nl

klfj dfefPlhkh 

 
 

 
0

)1(

0

)1(

)(][][
Nk Nl

klrlhkh

NCSU ECE792-41 Statistical Methods for Signal Analytics Nonparametric spectral estimation [38]

Output Power From H(f) filter

From the filter bank perspective of periodogram:

Thus
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Matrix-Vector Form of MVSE Formulation

Define

 The constraint can be written in 

vector form as  1eh
H

)( 0fH
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Solving MVSE

 Use Lagrange multiplier approach 
for solving the constrained optimization problem

– Define real-valued objective function s.t. the stationary condition 

can be derived in a simple and elegant way based on the theorem 

for complex derivative/gradient operators
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Solution to MVSE

The optimal filter and its 

output power: 
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Bring () into ():
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MVSE: Summary

 MVSE is a data adaptive estimator and provides improved 
resolution and reduced variance over periodogram

– Also referred to as “High-Resolution Spectral Estimator”

– Doesn’t assume a particular underlying model for the data

(i.e. normalize by filter b.w.)

If choosing the bandpass filters to be FIR of length q, 

its 3dB-b.w. is approximately 1/q

Thus the MVSE is

  eRe

q
fP

TH 1MV
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MVSE  vs. Periodogram

 MVSE is a data adaptive estimator and provides improved 
resolution and reduced variance over periodogram

Periodogram MVSE

Equivalent 

Bandpass Filter

h

e

Filter is “universal” 

data-independent
Filter adapts to 

observation data via R

Equivalent 

spectrum estimate 
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Recall:  Case Study on Non-parametric Methods 

 Test case: a process consists of narrowband components 
(sinusoids) and a broadband component (AR)

–

– N = 32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric 
spectral estimators

(Fig.2.17 from Lim/Oppenheim book)
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Ref. on Derivative and Gradient Operators for 

Complex-Variable Functions

Ref:  D.H. Brandwood, “A complex gradient operator and its application 

in adaptive array theory,”  in IEE Proc., vol. 130, Parts F and H, no.1, 

Feb. 1983.  

(downloadable from IEEEXplore)

– Solving constrained optimization 

with real-valued objective function of complex variables, 

subject to constraint function of complex variables

 As seen in minimum variance spectral estimation and other 
array/statistical signal processing context.
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Recall:  Filtering a Random Process
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Chi-Squared Distribution
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Chi-Squared Distribution (cont’d)
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Periodogram of White Gaussian Process

See proof in Appendix 2.1 in Lim-Oppenheim Book:

- Basic idea is to examine the distribution of real and 

imaginary part of the DFT, and take the magnitude


