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Summary of Related Readings on Part-lll

Overview Haykins 1.16, 1.10

3.1 Non-parametric method
Hayes 8.1, 8.2 (8.2.3,8.2.5); 8.3

3.2 Parametric method
Hayes 8.5, 4.7; 8.4

3.3 Frequency estimation
Hayes 8.6

Review
— On DSP and Linear algebra: Hayes 2.2, 2.3
— On probability and parameter estimation: Hayes 3.1 — 3.2
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Spectrum Estimation: Backqground

e Spectral estimation: determine the power distribution in
frequency of a w.s.s. random process

— E.g., “Does most of the power of a signal reside at low or high
frequencies?” “Are there resonances in the spectrum?”

e Applications:

— Needs of spectral knowledge in spectrum domain non-causal
Wiener filtering, signal detection and tracking, beamforming, etc.

— Wide use in diverse fields: radar, sonar, speech, biomedicine,

geophysics, economics, ...

e Estimating p.s.d. of a w.s.s. process
< estimating autocorrelation at all lags
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Spectral Estimation: Challenges

e A w.s.s process is infinitely long. (Why?) When a limited
amount of observation data is available:

— Can’t get r(k) for all k and/or may have inaccurate estimate of r(k)
— Scenario-1: transient measurement (earthquake, volcano, ...)

— Scenario-2: constrained to short period to ensure (approx.)
stationarity In speech processing

f(k)zﬁ iu[n]u*[n—k], k=01,...M

n=k+1

e Observed data may have been corrupted by noise
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Spectral Estimation: Major Approaches

e Nonparametric methods
— No assumptions on the underlying model for the data
— Periodogram and its variations (averaging, smoothing, ...)
— Minimum variance method

e Parametric methods
— ARMA, AR, MA models
— Maximum entropy method

e Frequency estimation (noise subspace methods)

— For harmonic processes that consist of a sum of sinusoids or
complex-exponentials in noise

e High-order statistics

NCSU ECE792-41 Statistical Methods for Signal Analytics Nonparametric spectral estimation



Example of Speech Spectrogram
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Figure 3 of SPM May’98 Speech Survey
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“Sprouted grains and seeds are used 1n salads and dishes such as chop suey”
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Section 3.1 Classical Nonparametric Methods

Recall: given a w.s.s. process {x[n]} with
E[x[n]]=m,

<
E[x"[n]x[n+k]]=r(k)

-

The power spectral density (p.s.d.) is defined as

X : 1 1
P(f)= Yr(e 35153
k=—o0

(orw=24 -7 <w<x)

As we can take DTFT on a specific realization of a random process,
What is the relation between the DTFT of a specific signal and the
p.s.d. of the random process?
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Ensemble Average of Squared Fourier Magnitude

e p.s.d. can be related to the ensemble average of
the squared Fourier magnitude |X(w)|?

N A 1 M .
Consider P, ()= x[ne 2 "
v () oM 1 n;ﬂ [n]

_ 1 i ix[n]x*[m]e“'z”f (n-m)
2M +1n=—M m=—M

l.e., take DTFT on (2M+1) samples and
examine normalized squared magnitude

Note: for each frequency f, Py (f) is a random variable
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Ensemble Average of Py, (f)

1 M M

E[P. (f)]= r(n—m)e## (M
[Pu ()] Y +1nzh:/lmZM( )

1
2M +1-|kDr(k)e '#™*
2|v|+1kz( +1-kr(k)e”

_ i 1— K r(k)e =™
Sy 2M +1

M
- 1
_ k —j2»4k k k ) 24k
kZEM,F( )e M 1k§,\ r(k)e”

e Now, what if M goes to infinity?
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P.S.D. and Ensemble Fourier Magnitude

If the autocorrelation function decays fast enough s.t.

i\k\"(k)@o (i.e.,r(k) >0 rapidly for kT)

then  im E[R, (1)]= k;r(k)e‘””fk = E(S fd)

2

- 1 M 1

Thus —i2n
P(f)=Ilim E ExneJ % 3%
() M o0 2I\/I+1n:_M[] ()
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Smeared P.S.D. for Finite Length Data

o) true p.s.d. P(f) Recall E[IS\M ()]

p3nAl M
= S wik)r(k)e 2%
k=—M

o =P(f)*W(f)

(a)
Elf e smeared p.s.d.  where
P(F) * W(f) K]
w(k) =1-

2M +1

: o W(f)= sin[(M +1)/ 2]
Figure 8.5 () The power spectrum ;Jfa singIeE l.::nusoid in white noise and (b} the expected 272- ( M + 1) S In (0) / 2)

value of the periodogram.

[Hayes Fig. 8.5]
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Freguency Resolution Improves as N increases

50 realizations overlaid

averaged Frequency resolution:
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[Hayes Fig. 8.8]
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3.1.1 Periodogram Spectral Estimator

(1) This estimator is based on (**)

Given an observed data set {x[0], x[1], ..., X[N-1]},
the periodogram is defined as

N 1 N2 G
Peer(f) = N > x[n]e”!#"
X XN —= YNK) —= 15[ X))
) owe el DET Ante) !
W Ne (o NA] PWDdﬁg’W’“
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An Equivalent Expression of Periodogram

VAN

The periodogram estimator can be written in terms of I'(K)

N-1 A

Prer(f) =D r(k)e™**
k=—(N-1)
A 1 Nk A N
where (k) =N X' [n]x[n+Kk];r(=k)=r (k) fork >0
n=0

— The quality of the estimates for the higher lags of r(k) may be
poorer since they involve fewer terms of lag products in the
averaging operation

— Autocorrelation sequence is zeroed out for |k| = N.

Exercise: Prove using the definition of the periodogram estimator.
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(2) Filter Bank Interpretation of Periodogram

For a particular frequency of f,

A 1 N-1
Prer(f,) = ZE_JMOKX[k]
k=0

N
i N—1 2
=| N-|>» h[n—-k]x[k]
k=0

| 1n=0

where - 1

h[n] =- Nexp(JZﬂfon) forn=—(N -1),...-1,0;
0 otherwise

\

— Impulse response of the filter h[n]: a windowed version of a
complex exponential
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Frequency Response of hin]

sinNz(f - f,)
Nsinz(f-f,)

— o
aliased-sinc function centered at f,.

H(f)= exp[j(N -Dz(f - f,)]

e H(f) is a bandpass filter y L HE))
— Center frequency is f,
[
— 3dB bandwidth ~ 1/N — N
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Periodogram: Filter Bank Perspective

e Can view the periodogram as an estimator of power
spectrum that has a built-in filterbank

— The filter bank ~ a set of bandpass filters

— The estimated p.s.d. for each frequency f, Is the power of one
output sample of the bandpass filter centering at f,

Pres(1,) =| N-[3_hin k(K]
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[Lim/Oppenheim Fig.2.4]

' I Periodogram of zero-mean white Gaussian noise
Eq - Wh ite Gau Sslan ProceSS using N-point data record: N = 128, 256, 512, 1024

-'.| L\ﬂ';‘l Tl‘l lklif ’“1 "_‘ “T”#‘l-ﬁ _l"dl\"'. {‘ W E{ l UT‘ ‘ M
T Judi
4 k! 1 f ‘ \1 =
N'= 128 51é
*m'%’ ‘zll-ﬁu Il ""\' J\' l'
ff;" IN k" ' il: “" " h

w ’HI

The random fluctuation (measured by variance) of the periodogram
estimator does not decrease with increasing N
=>» periodogram is an inconsistent estimator

N—256
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(3) How Good is Periodogram for Spectral Estimation?

If N —> o0, Will Prer —> p.s.d.P(f)?

e Estimation: Tradeoff between bias and variance
N
BE(GY =0
N NP
E(I10-E®N ) =7
e For white Gaussian process, one can show that at f, = k/N

= E[ Ppratr)]) = PR, k=0t -~ Ma
N

Vﬂf[{ﬁp}_:_[a_d_m]: iP (), K= ¢ ;\.J.ft < P (f)
ZPAGKD . K:OI‘I_'
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Performance of Periodogram: Summary

e The periodogram for white Gaussian process is an
unbiased estimator but not consistent

— The variance does not decrease with increasing data length

— Its standard deviation is as large as the mean (equal to the quantity
to be estimated)

e Reasons for the poor estimation performance

— Given N real data points, the # of unknown parameters {P(f,), ...
P(fy2)} we try to estimate is N/2, i.e., proportional to N

e Similar conclusions can be drawn for processes with
arbitrary p.s.d. and arbitrary frequencies

— Asymptotically unbiased (as N goes to infinity) but inconsistent
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3.1.2 Averaqged Periodogram

e One solution to the variance problem of periodogram
— Average K periodograms computed from K sets of data records

A 1 K-1 , (M)
Paveer(f) = —ZPPER(f)
K m=0
where A~ (M L1 ok
Peer () :% x_[n]e”"*™"
n=0

and the N = KL data points are arranged into K sets of length L:
{xI[0], ..., x,[L-1]; x[n],.., x,[L-1];..
Xg-a[N] s X4 [L=1]
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Performance of Averaged Periodogram

— Assume the K sets of data records are mutually uncorrelated.

— For a white Gaussian input signal, Pg(’,”‘IBER(f),m =0,..,L—
1 are 1.1.d., and one can verify that

Val"[pAVPER(fi)] =
{%Pz(fz-), =123 -1,
EP (.fi)a ?’:0353

where f; =1/L.

— If L is fixed, K and N are allowed to go to infinite, then
P.vper (f) is a consistent estimator.
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Practical Averaged Periodogram

e Usually we partition an available data sequence of length N
Into K non-overlapping blocks, each block has length L (i.e., N=KL):

X .[n]=x[n+mL], n=0,1.., L-1
m=0,1.. K-1

e Since the blocks are contiguous, the K sets of data records
may not be completely uncorrelated

— Thus the variance reduction factor is in general less than K

e Periodogram averaging is also known as Bartlett's method
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Averaged Periodogram for Fixed Data Size

e Given a data record of fixed length N, will the result continue
Improving if we segment it into more and more subrecords?

We examine for a real-valued stationary process:

N 1 K-1  (m) | -
E| Paveer(T) | = % ZPPER(f) = E[PPER(f)]
| m=0 _

identical stat. mean for all m

Pk (f) = Zf<0>(l)e j2

Note

I=—(L-1) SN an equivalent
L-1-1] expression to
A(0) 1 definition in terms
e FO1) = > x{n]x|n+]i] of
n=0
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Mean of Averaged Periodogram

= E[A”@]= (1——%\_)1*-(!1) jﬁ’r‘\ﬂlé

VA :
— N (L]
CEBaa®] £ warrw e
AvPER — Q’* )
NCK] = ﬂl—- KV, Ao (k<L ) NG
). Rt o4~ 30dR bw.
coor (Boi‘:l‘ja.tt) w\g%'/\‘j—\«-*’"t‘-‘-‘/LJ
1 Sxi\._n-j_L' W-{hd-ﬁk.‘\ u
= W)= (Sm,‘ﬂj‘ ) ~ : /\’J*J-L
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Statistical Properties of Averaged Periodogram

E[Paveer(f)]= DTFTHWKIr ()} e
1
— J_ZEW ( f T 77) P(U)d 77 convolution in frequency

2
= P(f)
e Biased estimator (both averaged and regular periodogram)

— The convolution with the window function w[k] lead to the mean of
the averaged periodogram being smeared from the true p.s.d.

e Asymptotically unbiased as L — «
— To avoid the smearing, the window length L must be large enough so
that the narrowest peak in P(f) can be resolved
e Fixing N = KL, the choice of K leads to a tradeoff between
bias and variance

Small K => better resolution (smaller smearing/bias) but larger variance
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Non-parametric Spectrum Estimation: Recap

e Periodogram
— Motivated by relation between p.s.d. and squared magnitude of DTFT
of a finite-size data record
— Variance: won’t vanish as data length N goes infinity: “inconsistent”

— Mean: asymptotically unbiased w.r.t. data length N in general

¢ equivalent to apply triangular window to autocorrelation function
(windowing in time gives smearing/smoothing in freq. domain)

¢ unbiased for white Gaussian (flat spectrum)

e Averaged periodogram
— Reduce variance by averaging K sets of data record of length L each

— Small L increases smearing/smoothing in p.s.d. estimate thus higher
bias = equiv. to triangular windowing to autocorrelation sequence

e \Windowed periodogram: generalize to other symmetric windows
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Case Study on Non-parametric Methods

e Test case: a process consists of narrowband components
(sinusoids) and a broadband component (AR)

— x[n] = 2cos(win) + 2 cos(wan) + 2 cos(wsn) + z[n],
where z[n] = —a1z[n — 1] + v[n],a; = —0.85,02 = 0.1,
w1/27 = 0.05,ws /27 = 0.40, ws /21 = 0.42.

— N =232 data points are available g ]
=>» periodogram resolution f = 1/32 = _ |
E 20,00
e Examine typical characteristics § " |

of various non-parametric i E/ |

spectral estimators | L
" a0 ——

(Fig.2.17 from Lim/Oppenheim book) R e
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3.1.3 Periodogram with Windowing

e Review and Motivation

VAN

The periodogram estimator can be given in terms of I’(k)
N-1 A

I/:\)PER( f)= Z r(k)e‘jz”fk
k=—(N-1)
where T(K) = % N_zlfk CTAIXIN+ K] FK) =T (K)

fork >0

— The higher lags of r(k), the poorer estimates since the estimates
Involve fewer terms of lag products in the averaging operation

e Solution: weigh the higher lags less
— Trade variance with bias
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Windowing
e Use a window function to weigh the higher lags less
d).rrj-k_

\ N
P = 5 Wt e
= - ()

rshere. NI 15 0- " log indow" Wit propesties &
O pe WIS W)= w(0)=1 preserves variance r(0)
B WHK]=WIK]  sjmmatic
® Wkl=o o K| S M where ML N-|
@ W) mist be chasents ensure P, ) >0

e Effect: periodogram smoothing
— Windowing in time < Convolution/filtering the periodogram
— Also known as the Blackman-Tukey method

NCSU ECE792-41 Statistical Methods for Signal Analytics Nonparametric spectral estimation



Common Lag Windows

e Much of the art in non-parametric spectral estimation is in
choosing an appropriate window (both in type and length)

"ABLE 21 COMMON LAG WINDOWS

Name Delinition Fourier Transform
Rectangular (k) { e Rl Wiw = W
eelangule wiK) = ? = W
2 B ) ki>=>M (w) wlw)
sin %u,:.@f + 1)
sin w2
|k R
: b= Kl=M
artielt wik) = M Wiw) = Wsl(w)
0 k| = M : i
_ 1 {sin Mw..’2')'
M\ sin wf2
l l “1h¢ ﬁ!\. Ll = ﬂ,
Hanning wi=42" 2% & Wiw) = inlﬁw — 7/M)
0 k| =M ]
t -qlh [ )

r

1
= —Wlw + m/M)

&
- e 0.54 + (.46 cos 1?--. kl=M : ;
lamming wikl = M Wiw) = 0.23 Wilw — 7/M)
0, el =M + (1,54 Wolw}
+ 0.23 Welw + 7/M)

e TR R e O R Table 2.1 common lag window
41—7)—p~2'@ [k =M/2  Wie)=—|>——T

7y M2 sin‘w)2 (from Lim-Oppenheim book)
arzen wik) = ’[", = ﬂ):' .)_f sl = sin* M/ 4)
“\ M) R sinfuw/2 ) N . | . .
0, k] > M onparametric spectral estimation




Discussion: Estimate r(k) via Time Average

e Normalizing the sum of (N—k) pairs
by a factor of 1/N ? v.s. by a factor of 1/(N—k) ?

Biased (low variance) Unbiased (may not non-neg. definite)

- L ON=l-k +* A Nl 4y
P =7 X XK1 X0 F00 = [ XOwKT K (n)
N=o ) A=D

~ o L oxo
« Hints on proving RN: X X) W
the non-negative " xwy ° 0D i
definiteness: using = ﬁ Xy X0©) ;(D)
74 (k) to construct : '. © O x(D
correlation matrix / XéN’\)xtﬂ“\) | ’ :
. \ '
- *
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3.1.4 Minimum Variance Spectral Estimation (MVSE)

e Recall: filter bank perspective of periodogram

— The periodogram can be viewed as estimating the p.s.d. by
forming a bank of narrowband filters with sinc-like response

— The high sidelobe can lead to “leakage” problem:

¢ large output power due to p.s.d. outside the band of interest

e MVSE designs filters to minimize the leakage from out-of-
band spectral components

— Thus the shape of filter is dependent on the frequency of interest
and data adaptive

(unlike the identical filter shape for periodogram)

— MVSE is also referred to as the Capon spectral estimator
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Main Steps of MVSE Method

1. Design a bank of bandpass filters H,(f) with center
frequency f, so that

— Each filter rejects the maximum amount of out-of-band power
— And passes the component at frequency f; without distortion

2. Filter the input process {x[n]} with each filter in the filter
bank and estimate the power of each output process

3. Set the power spectrum estimate at frequency f; to be the
power estimated above divided by the filter bandwidth
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Formulation of MVSE

The MVSE designs a filter H(f) for each
frequency of interest f,

minimize the output power
[z 2
p=| 2 H(H P(f)df
2
subject to H(f,)=1

(i.e., to pass the components at f, w/o distortion)
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Qutput Power From H(f) filter

From the filter bank perspective of periodogram:

H(f)= > hine

n=—(N-1)
Thus
0 _ 0 .
> h[kle ™ > h[1]e?" P(f)df
92 k=—(N-1) I——(N—l)
0 0
= > Y K] [|]j P(f)el?# (-0 df
k=—(N-1) I=—(N-1) Equiv. to filtering r(k)
0 0 ) with h(k) ® h*(—k)
= Z Z hik]h [I]r (I — k) and evaluating at
k=—(N-1) I=—(N-1) outputtime k=0
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Matrix-Vector Form of MVSE Formulation

- - t AT
Define Thi0l 1 P = A h s
v | MY c Moy M <= 7 Rl
L é «" [’N(ﬂ. M_\)» ‘M\_Nﬂ l“(\) (D) ‘
L M—(N"O:)-J . N o \
L, “JLu
0 _ [ ,q«
£ = | o = The constraint can be written in
: vector formas h™e=1
L 3 (-0 i
€ H (fo)
Thus the problem becomes
mlin h"R"h subject to h"e=1
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def
Solving MVSE J =h"R"h+Rel22(1-h"e)]

e Use Lagrange multiplier approach
for solving the constrained optimization problem

— Define real-valued objective function s.t. the stationary condition
can be derived in a simple and elegant way based on the theorem
for complex derivative/gradient operators

mind =h"Rh+ A(L-h"¢) + [2(L-h"e)]
“h"R'h+A(L-h"e)+ 2’ (1-€"h)
n—-Ae=0

} - ART)"
or v,d=0="R") -1¢ =0 = h=2("")e

eMm‘%J:O:RT

and h"e=1

|5

—(R")'h-1e=0=R"h-4e=0
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_ .1 LHPT _RKH G
Solution to MVSE MinJ =h"R h+A(1-h e)+|Aa-h"e)

Bring (**) Iinto (*):

T
g (R")"e

Filter's output power:

p=h"RTh=h"R"(R") e

=A

(Vf orv,J=0=h"e=1 (%
V- 0rv,J=0= R'h—-1e=0=h=A(R") e (*%

The optimal filter and its
output power:

R )"
Ny = eH((RT))le €
B 1
L = QH (RT )_1§
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MVSE: Summary

If choosing the bandpass filters to be FIR of length g,
its 3dB-b.w. is approximately 1/q

Thus the MVSE is A _ _
Ris qxq correlation matrix

Pav () = —— 1
e (RT) e e - exp(me‘)
(i.e. normalize by filter b.w.) exp(j2f (q-1))

e MVSE is a data adaptive estimator and provides improved
resolution and reduced variance over periodogram

— Also referred to as “High-Resolution Spectral Estimator”
— Doesn’t assume a particular underlying model for the data
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MVSE vs. Periodogram

e MVSE Is a data adaptive estimator and provides improved
resolution and reduced variance over periodogram

Periodogram

Equivalent
Bandpass Filter e
h
Filter is “universal’
data-independent
Equivalent
spectrum estimate q- eH |QT e
P(f) -

NCSU ECE792-41 Statistical Methods for Signal Analytics

R,
e" (RT )—1g =

Filter adapts to
observation data via R

q
e"(R"J'e
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Recall: Case Study on Non-parametric Methods

e Test case: a process consists of narrowband components
(sinusoids) and a broadband component (AR)

— x[n] = 2cos(win) + 2 cos(wan) + 2 cos(wsn) + z[n],
where z[n] = —a1z[n — 1] + v[n],a; = —0.85,02 = 0.1,
w1/27 = 0.05,ws /27 = 0.40, ws /21 = 0.42.

— N =232 data points are available g ]
=>» periodogram resolution f = 1/32 = _ |
B 30,00
e Examine typical characteristics § " |

of various non-parametric ; E/ |

spectral estimators | L
" a0 ——

(Fig.2.17 from Lim/Oppenheim book) R e
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Ref. on Derivative and Gradient Operators for
Complex-Variable Functions

Ref: D.H. Brandwood, “A complex gradient operator and its application
in adaptive array theory,” in IEE Proc., vol. 130, Parts F and H, no.1,
Feb. 1983.

(downloadable from IEEEXplore)

— Solving constrained optimization
with real-valued objective function of complex variables,
subject to constraint function of complex variables

¢ As seen in minimum variance spectral estimation and other
array/statistical signal processing context.
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Recall: Filtering a Random Process

NS S. Yo a0

procest — L hpnl H—'_‘_'“

Stohle LTT fivter

Ty e
Ty () G Fyx (K) 3] 'Hi}\ VASY
-j—-HE;r— ﬂ—lll."t{‘.-l‘
e
fy el = RXT % K ) TE,}_ NUATMESIA
T terams e.‘j ET e Y (]

Pyiy = Py HU) H U/g*)

= Pyl = D m) Hlw) H*(ey= Pr (W) HE ™
3=ed®
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Chi-Squared Distribution

T xnd v itd Nooy gomn=o,1 - N=1 and
g( ;"‘d‘ﬁx‘m
Theon gﬁolmS Chi- S?{“MO“"’W butTon- o]

d\e?ffe&l\f} -~ _Xl\l
owd. ELE)= N, Var(g)= 2N
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Chi-Squared Distribution (cont’d)
paf- o d~ K,
l 2 v .
“PQH—.: i —ZNfl]‘l(I\J/l) H/ = ‘]QBL?:'O
O E:S_ H'C_D
pohere [T T8 T Gawai eyl
o) = S‘::' A {{'5’015/ fot- X>—1.

N5 Tj X ¥s Mr“xﬁg[ef, ]_’ () = VLP(_PL) —n\

plog
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Periodogram of White Gaussian Process

me'jk— K/r\f T can be shdne thats

¢ ZPP&& e % Ao K=l 20 -
| P (5

PP&#- (3 NX ]LWK#OI

P e

._l‘

/

k]a

— E[ %PER(TK)] — P(j_l"\> ; K=0,l ~-~ N/.Z)_

I~ 2 = .M~
Vor [ P )= { P ek o
ZP;L@KD . K= 0, Y

See proof in Appendix 2.1 in Lim-Oppenheim Book:
- Basic idea is to examine the distribution of real and

imaginary part of the DFT, and take the magnitude
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