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Summary of Related Readings on Part-III

Overview    Haykins  1.16, 1.10

3.1  Non-parametric method

Hayes  8.1;    8.2  (8.2.3, 8.2.5);    8.3

3.2  Parametric method

Hayes  8.5,  4.7;    8.4

3.3  Frequency estimation

Hayes 8.6

Review 

– On DSP and Linear algebra:  Hayes 2.2, 2.3

– On probability and parameter estimation:  Hayes 3.1 – 3.2



NCSU ECE792-41 Statistical Methods for Signal Analytics Parametric spectral estimation  [3]

Motivation

 Implicit assumption by classical methods 

– Classical methods use Fourier transform on either windowed data or 
windowed autocorrelation function (ACF)

– Implicitly assume the unobserved data or ACF outside the window 
are zero => not true in reality

– Consequence of windowing:   smeared spectral estimate 
(leading to low resolution)

 If prior knowledge about the process is available

– We can use prior knowledge and select a good model to 
approximate the process

– Usually need to estimate fewer model parameters (than non-
parametric approaches) using the limited data points we have

– The model may allow us to better describe the process outside the 
window (instead of assuming zeros)
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General Procedure of Parametric Methods

 Select a model (based on prior knowledge)

 Estimate the parameters of the assumed model

 Obtain the spectral estimate implied by the model (with 
the estimated parameters)
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Spectral Estimation using AR, MA, ARMA Models

 Physical insight: the process is generated/approximated by filtering 

white noise with an LTI filter of rational transfer func H(z)

 Use observed data to obtain estimates Ƹ𝑟(𝑘) for small 𝑘’s

– Ƹ𝑟(𝑘) of larger lags are implicitly extrapolated by the estimated model

 Relation between r(k) and filter parameters {ak} and {bk}

– PARAMETER EQUATIONS from Section 2.1.2(6)

– Solve the equations using Ƹ𝑟(𝑘) to obtain estimated filter parameters

– Use the p.s.d. implied by the estimated model as spectral estimate

 Deal with nonlinear parameter equations

– Try to convert/relate them to the AR models that have linear equations 
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Review:  Parameter Equations

Yule-Walker equations (for AR process)

ARMA model MA model
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3.2.1  AR Spectral Estimation

(1) Review of AR process

– The time series {x[n], x[n−1], …, x[n−m]} is a realization of 

an AR process of order M if it satisfies difference equation

x[n] + a1 x[n−1] + … + aM x[n−M] = v[n]

where {v[n]} is a white noise process with variance 2 .

– Generating an AR process with parameters ො𝑎𝑖 :
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P.S.D. of An AR Process

Recall: the p.s.d. of an AR process {x[n]} is given by 

)/1()(
)(ˆ

2

AR 


zAzA
zP



fjj eez  2  

2

1

2

2

AR

1

)(ˆ







M

k

fkj

kea

fP





^ ^

^



NCSU ECE792-41 Statistical Methods for Signal Analytics Parametric spectral estimation  [9]

Procedure of AR Spectral Estimation

 Observe the available data points x[0], …, x[N-1], and

Determine the AR process order p

 Estimate the autocorrelation functions (ACF) k = 0, …, p

 Solve ො𝑎𝑖 from the Yule-Walker equations (or the normal 

equations of forward linear prediction)

– Recall for an AR process, the normal equation of FLP is 

equivalent to the Yule-Walker equation

 Obtain estimated power spectrum:

Biased (low variance) Unbiased (may not non-neg. definite)
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3.2.2 Maximum Entropy Spectral Estimation (MESE)

 Viewpoint:  Extrapolations of ACF

– { Ƹ𝑟 0 , … Ƹ𝑟 𝑝 } is known; there are generally an infinite number of 

possible extrapolations for r(k) at larger lags

– As long as {r[p+1], r[p+2], …} guarantee that the correlation 

matrix is non-negative definite, they all form valid ACFs for w.s.s.

 Maximum entropy principle

– Perform extrapolation s.t. the time series characterized by the 

extrapolated ACF has maximum entropy

– i.e., the time series will be the least constrained thus most random 

one among all series having the same first (p+1) ACF values

=> Maximizing entropy leads to estimated p.s.d. be the 
smoothest one

– Recall white noise process has flat p.s.d.
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MESE for Gaussian Process: Formulation

Thus the max entropy spectral estimation is
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MESE for Gaussian Process: Solution

 For Gaussian processes, the MESE is equivalent to AR 
spectral estimator and the ෠𝑃ME(𝑓) is an all-pole spectrum

– Different assumptions on the process:  Gaussian vs. AR processes

where ො𝑎𝑘 are found by solving the Yule-Walker equations 

given the estimated ACF values Ƹ𝑟 0 , … Ƹ𝑟 𝑝 .

Using the Lagrangian multiplier technique, the solution 

can be found as
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3.2.3  MA Spectral Estimation

Recall important results on MA process:  

(1) The problem of solving for bk given {r(k)} is to solve a set of 

nonlinear equations;

(2) An MA process can be approximated by an AR process of 

sufficiently high order.

An MA(q) model

can be used to define an MA spectral estimator
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Basic Idea to Avoid Solving Nonlinear Equations

Consider two processes:  

 Process #1: an approximated high-order AR process in 
the observed data 𝑥 𝑛

– We model 𝑥 𝑛 as a high-order AR process generated by 1/ መ𝐴(𝑧) filter

 Process #2:  an MA process 𝑦 𝑛 generated by መ𝐴(𝑧) filter

– Since we know መ𝐴(𝑧), we can obtain 𝑦 𝑛 ’s autocorrelation values 𝑟𝑦(𝑘)

– We model process #2 as an AR(q) process => the filter would be 1/ ෠𝐵(𝑧)
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Use AR Model to Help Finding MA Parameters

– For simplicity, we consider the real coefficients for the MA model.
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 The RHS represents power spectrum of an AR(q) process
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Recall: ACF of Output Process After LTI Filtering

w.s.s. 

process

stable LTI filter

filter filter

h
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Use AR to Help Finding MA Parameters (cont’d)

Let 𝑥 𝑛 = 𝑤 𝑛 ~𝑁(0, 𝜎𝑤
2) i.i.d., and ℎ 𝑛 = ො𝑎𝑛, we have

for lag k

Knowing autocorrelation sequence 𝑟𝑦 𝑘 , the best AR 

coefficients ෠𝑏𝑘 for process #2 can be obtained by direct 

matrix inverse or Levinson-Durbin recursion.

• Note that the best AR coefficients for process #2 are 

actually the best MA coefficients for process #1.



1. Use Levinson-Durbin recursion and solve for 

where
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Durbin’s Method

– We first approximate the observed data sequence {x[0], …, x[N]} 

with an AR model of high order (often pick L > 4q)

– We use biased ACF estimator (1/N) to ensure nonnegative 

definiteness and smaller variance than unbiased estimator [1/(N−k)]
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Durbin Method (cont’d)

– The result {bi} is the estimated MA parameters for original {x[n]}

– Note we add 1/(L+1) factor to allow the interpretation of ra(k) as an 

autocorrelation function estimator

where

2. Fit an AR(q) model to the data sequence }ˆ,...,ˆ,ˆ,1{ 21 Laaa
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3.2.4 ARMA Spectral Estimation
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Modified Yule-Walker Equations

Recall the Yule-Walker Eqs. for ARMA(p, q) process

We may use equations for k ≥ q+1 to solve for {al} 

“Modified Yule-Walker Equations”



1. By solving the modified Yule-Walker eqs., we obtain

2. We eliminate the AR component by filtering 𝑥 𝑛 with 

FIR filter መ𝐴 𝑧 to obtain an approximate MA(q) process:

መ𝐴 𝑧 𝑋 𝑧 = መ𝐴 𝑧
𝐵 𝑧

A 𝑧
𝑊 𝑧 ≈ 𝐵 𝑧 𝑊 𝑧

3. Coefficients 𝑏𝑘 can be estimated by Durbin’s method.
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Estimating ARMA Parameters
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Extension: LSMYWE  Estimator

 Performance by solving p modified Yule-Walker equations 

followed by Durbin’s method

– May yield highly noisy spectral estimates (esp. when the matrix 

involving ACF is nearly singular due to poor ACF estimates)

 Improvement: use more than p equations to solve ො𝑎1, … , ො𝑎𝑝
in a least squared sense

– Use Yule-Walker equations for k = (q+1), …, M: min 𝐭 − 𝐒𝐚 2

– Least-squares solution: ො𝐚 = 𝐒𝐻𝐒 −1𝐒𝐻𝐭

– Then obtain 𝑏𝑘 by Durbin’s method

 “Least-Squares Modified Yule-Walker Equations” (LSMYWE)

Ref:  review in Hayes’ book Sec.2.3.6 on least square solution
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Comparison of Different Methods:  Revisit

 Test case: a process consists of narrowband components 
(sinusoids) and a broadband component (AR)

–

– N= 32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric and
parametric spectral estimators

(Fig.2.17 from Lim/Oppenheim book)
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3.2.5 Model Order Selection

 The best way to determine the model order is to base it on 
the physics of the data generation process

 Example:  speech processing

– Studies show the vocal tract can be modeled as an all-pole filter 

having 4 resonances in a 4kHz band, thus at least 4 pairs of 

complex conjugate poles are necessary

 Typically 10–12 poles are used in an AR modeling for speech

 When no such knowledge is available, we can use some
statistical test to estimate the order

Ref. for in-depth exploration:  “Model-order selection,” by P. Stoica and Y. Selen, 
IEEE Signal Processing Magazine, July 2004.
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Considerations for Order Selection

 Modeling error 

– Modeling error measures the (statistical) difference between the true 

data value and the approximation by the model

 e.g., estimating linear prediction MSE in AR modeling 

– Usually for a given type of model (e.g., AR, ARMA), the modeling 

error decreases as we increase the model order

 Balance between the modeling error and the amount of 
model parameters to be estimated

– The number of parameters that need to be estimated and represented 

increases as we use higher model order   Cost of overmodeling

– Can balance modeling error and the cost of going to higher model by 

imposing a penalty term that increases with the model order
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A Few Commonly Used Criteria

 Akaike Information Criterion (AIC)

– A general estimate of the Kullback-Leibler divergence between 

assumed and true p.d.f., with an order penalty term increasing linearly

– Choose the model order that minimize AIC

 Minimum Description Length (MDL) Criterion

– Impose a bigger penalty term to overcome AIC’s overestimation

– Estimated order converges to the true order as N goes to infinity

iNi p 2    ln)(AIC  
size of 

available data model error

model order: 

i=p for AR(p)

i=p+q for ARMA(p, q)
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