Part III Spectrum Estimation 3.2 Parametric Methods for Spectral Estimation

Electrical & Computer Engineering North Carolina State University

Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland, College Park. Contact: chauwai.wong@ncsu.edu.

Summary of Related Readings on Part-III

- Overview Haykins 1.16, 1.10
- 3.1 Non-parametric method

Hayes 8.1; 8.2 (8.2.3, 8.2.5); 8.3

3.2 Parametric method

Hayes 8.5, 4.7; 8.4

3.3 Frequency estimation Hayes 8.6

Review

- On DSP and Linear algebra: Hayes 2.2, 2.3
- On probability and parameter estimation: Hayes 3.1 3.2

<u>Motivation</u>

- Implicit assumption by classical methods
 - Classical methods use Fourier transform on either windowed data or windowed autocorrelation function (ACF)
 - Implicitly assume the unobserved data or ACF outside the window are zero => not true in reality
 - Consequence of windowing: smeared spectral estimate (leading to low resolution)
- If prior knowledge about the process is available
 - We can use prior knowledge and select a good model to approximate the process
 - Usually need to estimate fewer model parameters (than nonparametric approaches) using the limited data points we have
 - The model may allow us to better describe the process outside the window (instead of assuming zeros)

General Procedure of Parametric Methods

- Select a model (based on prior knowledge)
- Estimate the parameters of the assumed model
- Obtain the spectral estimate implied by the model (with the estimated parameters)

Spectral Estimation using AR, MA, ARMA Models

- Physical insight: the process is generated/approximated by filtering white noise with an LTI filter of rational transfer func *H*(*z*)
- Use observed data to obtain estimates $\hat{r}(k)$ for small k's
 - $\hat{r}(k)$ of larger lags are implicitly extrapolated by the estimated model
- Relation between r(k) and filter parameters $\{a_k\}$ and $\{b_k\}$
 - PARAMETER EQUATIONS from Section 2.1.2(6)
 - Solve the equations using $\hat{r}(k)$ to obtain estimated filter parameters
 - Use the p.s.d. implied by the estimated model as spectral estimate
- Deal with nonlinear parameter equations
 - Try to convert/relate them to the AR models that have linear equations

Review: Parameter Equations

<u>Yule-Walker equations</u> (for AR process)

$$\begin{cases} -\sum_{k=1}^{P} a(k) T_{x}[-k] + \sigma^{2} \\ -\sum_{k=1}^{P} a(k) T_{x}[-k] + \sigma^{2} \\ for k=0 \\ -\sum_{k=1}^{P} a(k) T_{x}[k-k] \\ for k \ge 1 \\ \end{cases} \begin{bmatrix} T_{x}(0) T_{x}(1) - - T_{x}(-P+1) \\ T_{x}(0) - - T_{x}(-P+1) \\ T_{x}(0) - - T_{x}(-P+1) \\ T_{x}(-P+1) - - T_{x}(-P+1) \\ T_{x}(-P) \\ T_{x}(-P) \\ \end{bmatrix} \begin{bmatrix} a(1) T_{x}(1) \\ a(2) \\ T_{x}(2) \\ T_{x}(2) \\ T_{x}(2) \\ T_{x}(-P) \\ T_{x}(-P) \\ T_{x}(-P) \end{bmatrix} = - \begin{bmatrix} T_{x}(1) \\ T_{x}(2) \\ T_{x}(2) \\ T_{x}(2) \\ T_{x}(2) \\ T_{x}(2) \\ T_{x}(-P) \\ T_{x}(-P) \\ T_{x}(-P) \end{bmatrix} = - \begin{bmatrix} T_{x}(1) \\ T_{x}(2) \\ T_{x}(2) \\ T_{x}(2) \\ T_{x}(P) \\ T_{x}(P) \end{bmatrix}$$

ARMA model

MA model

$$\begin{split} & \sum_{k=0}^{k} \sum_{k=1}^{k} \sum_{k=0}^{k} \sum_{k=0}^{k}$$

3.2.1 AR Spectral Estimation

(1) Review of AR process

- The time series $\{x[n], x[n-1], ..., x[n-m]\}$ is a realization of an AR process of order *M* if it satisfies difference equation $x[n] + a_1 x[n-1] + ... + a_M x[n-M] = v[n]$ where $\{v[n]\}$ is a white noise process with variance σ^2 .
- Generating an AR process with parameters $\{\hat{a}_i\}$:

Recall: the p.s.d. of an AR process {*x*[*n*]} is given by

Procedure of AR Spectral Estimation

- Observe the available data points x[0], ..., x[N-1], and Determine the AR process order p
- Estimate the autocorrelation functions (ACF) k=0, ..., p

Biased (low variance)

$$\hat{r}(k) = \frac{1}{N} \sum_{n=0}^{N-1-k} x[n+k] x^*[n]$$
Unbiased (may not non-neg. definite)

$$\hat{r}(k) = \frac{1}{N-k} \sum_{n=0}^{N-1-k} x[n+k] x^*[n]$$

- Solve {â_i} from the Yule-Walker equations (or the normal equations of forward linear prediction)
 - Recall for an AR process, the normal equation of FLP is equivalent to the Yule-Walker equation
- Obtain estimated power spectrum:

3.2.2 Maximum Entropy Spectral Estimation (MESE)

- Viewpoint: Extrapolations of ACF
 - $\{\hat{r}[0], ..., \hat{r}[p]\}\$ is known; there are generally an infinite number of possible extrapolations for r(k) at larger lags
 - As long as $\{r[p+1], r[p+2], ...\}$ guarantee that the correlation matrix is non-negative definite, they all form valid ACFs for w.s.s.
- Maximum entropy principle
 - Perform extrapolation s.t. the time series characterized by the extrapolated ACF has maximum entropy
 - i.e., the time series will be the least constrained thus most random one among all series having the same first (p+1) ACF values

=> Maximizing entropy leads to estimated p.s.d. be the smoothest one

- Recall white noise process has flat p.s.d.

MESE for Gaussian Process: Formulation

For a Gaussian random process, the entropy per sample is proportional to

$$\int_{-\frac{1}{2}}^{\frac{1}{2}}\ln P(f)df$$

Thus the max entropy spectral estimation is

$$\max \int_{-\frac{1}{2}}^{\frac{1}{2}} \ln P(f) df$$
subject to

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} P(f) e^{j2\pi f k} df = \hat{r}(k), \quad \text{for } k = 0, 1, ..., p$$

MESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution can be found as

$$\hat{P}_{\rm ME}(f) = \frac{\sigma^2}{\left|1 + \sum_{k=1}^p \hat{a}_k e^{-j2\pi f k}\right|^2}$$

where $\{\hat{a}_k\}$ are found by solving the Yule-Walker equations given the estimated ACF values $\hat{r}[0], ..., \hat{r}[p]$.

- For Gaussian processes, the MESE is equivalent to AR spectral estimator and the $\hat{P}_{ME}(f)$ is an all-pole spectrum
 - Different assumptions on the process: Gaussian vs. AR processes

3.2.3 MA Spectral Estimation

An MA(q) model

$$x[n] = \sum_{k=0}^{q} b_k v[n-k] \quad \Rightarrow \quad B(z) = \sum_{k=0}^{q} b_k z^{-k}$$

can be used to define an MA spectral estimator

$$\hat{P}_{\rm MA}(f) = \sigma^2 \left| 1 + \sum_{k=1}^{q} \hat{b}_k e^{-j2\pi f k} \right|^2$$

Recall important results on MA process:

- (1) The problem of solving for b_k given $\{r(k)\}$ is to solve a set of nonlinear equations;
- (2) An MA process can be approximated by an AR process of sufficiently high order.

Basic Idea to Avoid Solving Nonlinear Equations

Consider two processes:

- Process #1: an approximated high-order AR process in the observed data x[n]
 - We model x[n] as a high-order AR process generated by $1/\hat{A}(z)$ filter

• Process #2: an MA process y[n] generated by $\hat{A}(z)$ filter

- Since we know $\hat{A}(z)$, we can obtain y[n]'s autocorrelation values $r_y(k)$
- We model process #2 as an AR(q) process => the filter would be $1/\hat{B}(z)$

Use AR Model to Help Finding MA Parameters

- For simplicity, we consider the real coefficients for the MA model.

Note
$$P_{MA}(z) = \sigma^2 B(z) B(z^{-1})$$

To approximate it with an AR(L) model, i.e.,

- The RHS represents power spectrum of an AR(q) process
- The inverse ZT of LHS is the ACF of the AR(q) process

Recall: ACF of Output Process After LTI Filtering

Use AR to Help Finding MA Parameters (cont'd)

Let $x[n] = w[n] \sim N(0, \sigma_w^2)$ i.i.d., and $h[n] = \hat{a}_n$, we have

$$r_y(k) = \sigma_w^2 \sum_{n=0}^{L-k} \hat{a}_n \hat{a}_{n+k} \qquad \text{for lag } k$$

- → Knowing autocorrelation sequence $r_y(k)$, the best AR coefficients $\{\hat{b}_k\}$ for process #2 can be obtained by direct matrix inverse or Levinson-Durbin recursion.
- Note that the best AR coefficients for process #2 are actually the best MA coefficients for process #1.

Durbin's Method

1. Use Levinson-Durbin recursion and solve for

- We first approximate the observed data sequence $\{x[0], ..., x[N]\}$ with an AR model of high order (often pick L > 4q)
- We use biased ACF estimator (1/N) to ensure nonnegative definiteness and smaller variance than unbiased estimator [1/(N-k)]

2. Fit an AR(q) model to the data sequence $\{1, \hat{a}_1, \hat{a}_2, ..., \hat{a}_L^{\dagger}\}$

$$\begin{bmatrix} \widehat{\Gamma}_{a}(0) & \widehat{\Gamma}_{a}(1) & --- & \widehat{\Gamma}_{a}(g-1) \\ \widehat{\Gamma}_{a}(1) & \widehat{\Gamma}_{a}(0) & \widehat{\Gamma}_{a}(g-2) \\ \vdots & \vdots \\ \widehat{\Gamma}_{a}(g-1) & -- & -- & \widehat{\Gamma}_{a}(0) \end{bmatrix} \begin{bmatrix} \widehat{b}_{1} \\ \vdots \\ \widehat{b}_{g} \end{bmatrix} = - \begin{bmatrix} \widehat{\Gamma}_{a}(1) \\ \vdots \\ \widehat{b}_{g} \end{bmatrix}$$
where $\widehat{\Gamma}_{a}(K) = \frac{1}{L+1} = \sum_{n=0}^{L-K} \widehat{A}_{n} \widehat{A}_{n+K}$

- The result $\{b_i\}$ is the estimated MA parameters for original $\{x[n]\}$

- Note we add 1/(L+1) factor to allow the interpretation of $r_a(k)$ as an autocorrelation function estimator

3.2.4 ARMA Spectral Estimation

Recall the ARMA(p, q) model

$$x[n] = -\sum_{k=1}^{p} a_k x[n-k] + \sum_{k=0}^{q} b_k v[n-k]$$

We define an ARMA(p, q) spectral estimator

$$\hat{P}_{\text{ARMA}}(f) = \hat{\sigma}^2 \frac{\left|1 + \sum_{k=1}^{q} \hat{b}_k e^{-j2\pi f k}\right|^2}{\left|1 + \sum_{k=1}^{p} \hat{a}_k e^{-j2\pi f k}\right|^2}$$

Modified Yule-Walker Equations

Recall the Yule-Walker Eqs. for ARMA(p, q) process

$$\begin{cases} \Gamma_{x}[k] = - \oint_{l=1}^{P} a[l] \Gamma_{x}[k-l] + \int_{l=0}^{1} \int_{k=0}^{2\pi} h^{*}[l] b[l+k] \\ k=0,1,\dots,p \end{cases}$$

$$\Gamma_{x}[k] = - \int_{k=1}^{P} a[l] \Gamma_{x}[k-l] , \quad k \ge q+1.$$

We may use equations for $k \ge q+1$ to solve for $\{a_i\}$

$$\begin{bmatrix} \Gamma(\mathcal{X}) & \Gamma(\mathcal{X}^{-1}) & - & - & \Gamma(\mathcal{X}^{-1} + 1) \\ \Gamma(\mathcal{X}^{+1}) & \Gamma(\mathcal{X}^{-1}) & \vdots \\ \vdots & \vdots & \vdots \\ \Gamma(\mathcal{X}^{+1} + 1) & - & - & - & \Gamma(\mathcal{X}^{-1} + 1) \\ \Gamma(\mathcal{X}^{+1} + 1) & - & - & - & \Gamma(\mathcal{X}^{-1} + 1) \\ \hline = & - & \left[\begin{array}{c} \Gamma(\mathcal{X}^{+1} + 1) \\ \Omega_{\mathcal{X}} \\ \Omega_{\mathcal{X}} \end{array} \right] = - \begin{bmatrix} \Gamma(\mathcal{X}^{+1} + 1) \\ \vdots \\ \Gamma(\mathcal{X}^{+1} + 1) \\ \Omega_{\mathcal{X}} \end{array} \right] = - \begin{bmatrix} \Gamma(\mathcal{X}^{+1} + 1) \\ \vdots \\ \Gamma(\mathcal{X}^{+1} + 1) \\ \Omega_{\mathcal{X}} \end{bmatrix} = - \begin{bmatrix} \Gamma(\mathcal{X}^{+1} + 1) \\ \vdots \\ \Gamma(\mathcal{X}^{+1} + 1) \\ \Omega_{\mathcal{X}} \end{bmatrix} = - \begin{bmatrix} \Gamma(\mathcal{X}^{+1} + 1) \\ \vdots \\ \Gamma(\mathcal{X}^{+1} + 1) \\ \Omega_{\mathcal{X}} \end{bmatrix} = - \begin{bmatrix} \Gamma(\mathcal{X}^{+1} + 1) \\ \vdots \\ \Gamma(\mathcal{X}^{+1} + 1) \\ \Gamma(\mathcal{X}^{+1} + 1) \end{bmatrix} = - \begin{bmatrix} \Gamma(\mathcal{X}^{+1} + 1) \\ \vdots \\ \Gamma(\mathcal{X}^{+1} + 1) \\ \Gamma(\mathcal$$

Estimating ARMA Parameters

1. By solving the modified Yule-Walker eqs., we obtain

$$\hat{A}(z) = 1 + \sum_{k=1}^{p} \hat{a}_{k} z^{-k}$$

2. We eliminate the AR component by filtering x[n] with FIR filter $\hat{A}(z)$ to obtain an approximate MA(q) process:

$$\hat{A}(z)X(z) = \hat{A}(z)\frac{B(z)}{A(z)}W(z) \approx B(z)W(z)$$

3. Coefficients $\{b_k\}$ can be estimated by Durbin's method.

Extension: LSMYWE Estimator

- Performance by solving *p* modified Yule-Walker equations followed by Durbin's method
 - May yield highly noisy spectral estimates (esp. when the matrix involving ACF is nearly singular due to poor ACF estimates)
- Improvement: use more than p equations to solve $\{\hat{a}_1, \dots, \hat{a}_p\}$ in a least squared sense
 - Use Yule-Walker equations for k = (q+1), ..., M: $\min ||\mathbf{t} \mathbf{Sa}||^2$
 - Least-squares solution: $\hat{\mathbf{a}} = (\mathbf{S}^H \mathbf{S})^{-1} \mathbf{S}^H \mathbf{t}$
 - Then obtain $\{b_k\}$ by Durbin's method

→ "Least-Squares Modified Yule-Walker Equations" (LSMYWE)

Ref: review in Hayes' book Sec.2.3.6 on least square solution

Comparison of Different Methods: Revisit

 Test case: a process consists of narrowband components (sinusoids) and a broadband component (AR)

$$- x[n] = 2\cos(\omega_1 n) + 2\cos(\omega_2 n) + 2\cos(\omega_3 n) + z[n],$$

where $z[n] = -a_1 z[n-1] + v[n], a_1 = -0.85, \sigma_v^2 = 0.1,$
 $\omega_1/2\pi = 0.05, \omega_2/2\pi = 0.40, \omega_3/2\pi = 0.42.$

- N=32 data points are available → periodogram resolution f = 1/32
- Examine typical characteristics of various non-parametric and parametric spectral estimators

(Fig.2.17 from Lim/Oppenheim book)

NCSU ECE792-41 Statistical Methods for Signal Analytics

Parametric spectral estimation [25]

3.2.5 Model Order Selection

- The best way to determine the model order is to base it on the physics of the data generation process
- Example: speech processing
 - Studies show the vocal tract can be modeled as an all-pole filter having 4 resonances in a 4kHz band, thus at least 4 pairs of complex conjugate poles are necessary
 - → Typically 10–12 poles are used in an AR modeling for speech
- When no such knowledge is available, we can use some statistical test to estimate the order
- Ref. for in-depth exploration: "Model-order selection," by P. Stoica and Y. Selen, IEEE Signal Processing Magazine, July 2004.

Considerations for Order Selection

Modeling error

- Modeling error measures the (statistical) difference between the true data value and the approximation by the model
 - e.g., estimating linear prediction MSE in AR modeling
- Usually for a given type of model (e.g., AR, ARMA), the modeling error decreases as we increase the model order
- Balance between the modeling error and the amount of model parameters to be estimated
 - The number of parameters that need to be estimated and represented increases as we use higher model order → Cost of overmodeling
 - Can balance modeling error and the cost of going to higher model by imposing a penalty term that increases with the model order

A Few Commonly Used Criteria

- Akaike Information Criterion (AIC)
 - A general estimate of the Kullback-Leibler divergence between assumed and true p.d.f., with an order penalty term increasing linearly
 - Choose the model order that minimize AIC

$$AIC(i) = N \ln \varepsilon_{p} + 2i$$

size of \checkmark model error model order:
available data model error $i = p$ for AR(p)
 $i = p + q$ for ARMA(p, q)

- Minimum Description Length (MDL) Criterion
 - Impose a bigger penalty term to overcome AIC's overestimation
 - Estimated order converges to the true order as N goes to infinity

 $\mathrm{MDL}(i) = N \ln \varepsilon_p + (\log N)i$