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Summary of Related Readings on Part-III

Overview    Haykins  1.16, 1.10

3.1  Non-parametric method

Hayes  8.1;    8.2  (8.2.3, 8.2.5);    8.3

3.2  Parametric method

Hayes  8.5,  4.7;    8.4

3.3  Frequency estimation

Hayes 8.6

Review 

– On DSP and Linear algebra:  Hayes 2.2, 2.3

– On probability and parameter estimation:  Hayes 3.1 – 3.2



NCSU ECE792-41 Statistical Methods for Signal Analytics Parametric spectral estimation  [3]

Motivation

 Implicit assumption by classical methods 

– Classical methods use Fourier transform on either windowed data or 
windowed autocorrelation function (ACF)

– Implicitly assume the unobserved data or ACF outside the window 
are zero => not true in reality

– Consequence of windowing:   smeared spectral estimate 
(leading to low resolution)

 If prior knowledge about the process is available

– We can use prior knowledge and select a good model to 
approximate the process

– Usually need to estimate fewer model parameters (than non-
parametric approaches) using the limited data points we have

– The model may allow us to better describe the process outside the 
window (instead of assuming zeros)
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General Procedure of Parametric Methods

 Select a model (based on prior knowledge)

 Estimate the parameters of the assumed model

 Obtain the spectral estimate implied by the model (with 
the estimated parameters)
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Spectral Estimation using AR, MA, ARMA Models

 Physical insight: the process is generated/approximated by filtering 

white noise with an LTI filter of rational transfer func H(z)

 Use observed data to obtain estimates Ƹ𝑟(𝑘) for small 𝑘’s

– Ƹ𝑟(𝑘) of larger lags are implicitly extrapolated by the estimated model

 Relation between r(k) and filter parameters {ak} and {bk}

– PARAMETER EQUATIONS from Section 2.1.2(6)

– Solve the equations using Ƹ𝑟(𝑘) to obtain estimated filter parameters

– Use the p.s.d. implied by the estimated model as spectral estimate

 Deal with nonlinear parameter equations

– Try to convert/relate them to the AR models that have linear equations 
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Review:  Parameter Equations

Yule-Walker equations (for AR process)

ARMA model MA model
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3.2.1  AR Spectral Estimation

(1) Review of AR process

– The time series {x[n], x[n−1], …, x[n−m]} is a realization of 

an AR process of order M if it satisfies difference equation

x[n] + a1 x[n−1] + … + aM x[n−M] = v[n]

where {v[n]} is a white noise process with variance 2 .

– Generating an AR process with parameters ො𝑎𝑖 :
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P.S.D. of An AR Process

Recall: the p.s.d. of an AR process {x[n]} is given by 
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Procedure of AR Spectral Estimation

 Observe the available data points x[0], …, x[N-1], and

Determine the AR process order p

 Estimate the autocorrelation functions (ACF) k = 0, …, p

 Solve ො𝑎𝑖 from the Yule-Walker equations (or the normal 

equations of forward linear prediction)

– Recall for an AR process, the normal equation of FLP is 

equivalent to the Yule-Walker equation

 Obtain estimated power spectrum:

Biased (low variance) Unbiased (may not non-neg. definite)
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3.2.2 Maximum Entropy Spectral Estimation (MESE)

 Viewpoint:  Extrapolations of ACF

– { Ƹ𝑟 0 , … Ƹ𝑟 𝑝 } is known; there are generally an infinite number of 

possible extrapolations for r(k) at larger lags

– As long as {r[p+1], r[p+2], …} guarantee that the correlation 

matrix is non-negative definite, they all form valid ACFs for w.s.s.

 Maximum entropy principle

– Perform extrapolation s.t. the time series characterized by the 

extrapolated ACF has maximum entropy

– i.e., the time series will be the least constrained thus most random 

one among all series having the same first (p+1) ACF values

=> Maximizing entropy leads to estimated p.s.d. be the 
smoothest one

– Recall white noise process has flat p.s.d.



NCSU ECE792-41 Statistical Methods for Signal Analytics Parametric spectral estimation  [11]

MESE for Gaussian Process: Formulation

Thus the max entropy spectral estimation is


2

1

2

1 )(lnmax dffP

pkkrdfefP fkj ,...,1,0for         ),()(2

1

2

1

2 


subject to

For a Gaussian random process, the entropy per sample 

is proportional to 


2

1

2

1 )(ln dffP

^



NCSU ECE792-41 Statistical Methods for Signal Analytics Parametric spectral estimation  [12]

MESE for Gaussian Process: Solution

 For Gaussian processes, the MESE is equivalent to AR 
spectral estimator and the 𝑃ME(𝑓) is an all-pole spectrum

– Different assumptions on the process:  Gaussian vs. AR processes

where ො𝑎𝑘 are found by solving the Yule-Walker equations 

given the estimated ACF values Ƹ𝑟 0 , … Ƹ𝑟 𝑝 .

Using the Lagrangian multiplier technique, the solution 

can be found as

2

1

2

2

ME

1

)(ˆ

 




p

k

fkj

kea

fP




^



NCSU ECE792-41 Statistical Methods for Signal Analytics Parametric spectral estimation  [13]

3.2.3  MA Spectral Estimation

Recall important results on MA process:  

(1) The problem of solving for bk given {r(k)} is to solve a set of 

nonlinear equations;

(2) An MA process can be approximated by an AR process of 

sufficiently high order.

An MA(q) model

can be used to define an MA spectral estimator
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Basic Idea to Avoid Solving Nonlinear Equations

Consider two processes:  

 Process #1: an approximated high-order AR process in 
the observed data 𝑥 𝑛

– We model 𝑥 𝑛 as a high-order AR process generated by 1/ መ𝐴(𝑧) filter

 Process #2:  an MA process 𝑦 𝑛 generated by መ𝐴(𝑧) filter

– Since we know መ𝐴(𝑧), we can obtain 𝑦 𝑛 ’s autocorrelation values 𝑟𝑦(𝑘)

– We model process #2 as an AR(q) process => the filter would be 1/ 𝐵(𝑧)
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Use AR Model to Help Finding MA Parameters

– For simplicity, we consider the real coefficients for the MA model.
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where

order L
order q

 The RHS represents power spectrum of an AR(q) process

 The inverse ZT of LHS is the ACF of the AR(q) process
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Recall: ACF of Output Process After LTI Filtering

w.s.s. 

process

stable LTI filter

filter filter

h
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Use AR to Help Finding MA Parameters (cont’d)

Let 𝑥 𝑛 = 𝑤 𝑛 ~𝑁(0, 𝜎𝑤
2) i.i.d., and ℎ 𝑛 = ො𝑎𝑛, we have

for lag k

Knowing autocorrelation sequence 𝑟𝑦 𝑘 , the best AR 

coefficients 𝑏𝑘 for process #2 can be obtained by direct 

matrix inverse or Levinson-Durbin recursion.

• Note that the best AR coefficients for process #2 are 

actually the best MA coefficients for process #1.



1. Use Levinson-Durbin recursion and solve for 

where
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Durbin’s Method

– We first approximate the observed data sequence {x[0], …, x[N]} 

with an AR model of high order (often pick L > 4q)

– We use biased ACF estimator (1/N) to ensure nonnegative 

definiteness and smaller variance than unbiased estimator [1/(N−k)]
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Durbin Method (cont’d)

– The result {bi} is the estimated MA parameters for original {x[n]}

– Note we add 1/(L+1) factor to allow the interpretation of ra(k) as an 

autocorrelation function estimator

where

2. Fit an AR(q) model to the data sequence }ˆ,...,ˆ,ˆ,1{ 21 Laaa
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3.2.4 ARMA Spectral Estimation
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Modified Yule-Walker Equations

Recall the Yule-Walker Eqs. for ARMA(p, q) process

We may use equations for k ≥ q+1 to solve for {al} 

“Modified Yule-Walker Equations”



1. By solving the modified Yule-Walker eqs., we obtain

2. We eliminate the AR component by filtering 𝑥 𝑛 with 

FIR filter መ𝐴 𝑧 to obtain an approximate MA(q) process:

መ𝐴 𝑧 𝑋 𝑧 = መ𝐴 𝑧
𝐵 𝑧

A 𝑧
𝑊 𝑧 ≈ 𝐵 𝑧 𝑊 𝑧

3. Coefficients 𝑏𝑘 can be estimated by Durbin’s method.
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Estimating ARMA Parameters



NCSU ECE792-41 Statistical Methods for Signal Analytics Parametric spectral estimation  [23]

Extension: LSMYWE  Estimator

 Performance by solving p modified Yule-Walker equations 

followed by Durbin’s method

– May yield highly noisy spectral estimates (esp. when the matrix 

involving ACF is nearly singular due to poor ACF estimates)

 Improvement: use more than p equations to solve ො𝑎1, … , ො𝑎𝑝
in a least squared sense

– Use Yule-Walker equations for k = (q+1), …, M: min 𝐭 − 𝐒𝐚 2

– Least-squares solution: ො𝐚 = 𝐒𝐻𝐒 −1𝐒𝐻𝐭

– Then obtain 𝑏𝑘 by Durbin’s method

 “Least-Squares Modified Yule-Walker Equations” (LSMYWE)

Ref:  review in Hayes’ book Sec.2.3.6 on least square solution
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Comparison of Different Methods:  Revisit

 Test case: a process consists of narrowband components 
(sinusoids) and a broadband component (AR)

–

– N= 32 data points are available  
 periodogram resolution f = 1/32

 Examine typical characteristics 
of various non-parametric and
parametric spectral estimators

(Fig.2.17 from Lim/Oppenheim book)
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3.2.5 Model Order Selection

 The best way to determine the model order is to base it on 
the physics of the data generation process

 Example:  speech processing

– Studies show the vocal tract can be modeled as an all-pole filter 

having 4 resonances in a 4kHz band, thus at least 4 pairs of 

complex conjugate poles are necessary

 Typically 10–12 poles are used in an AR modeling for speech

 When no such knowledge is available, we can use some
statistical test to estimate the order

Ref. for in-depth exploration:  “Model-order selection,” by P. Stoica and Y. Selen, 
IEEE Signal Processing Magazine, July 2004.
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Considerations for Order Selection

 Modeling error 

– Modeling error measures the (statistical) difference between the true 

data value and the approximation by the model

 e.g., estimating linear prediction MSE in AR modeling 

– Usually for a given type of model (e.g., AR, ARMA), the modeling 

error decreases as we increase the model order

 Balance between the modeling error and the amount of 
model parameters to be estimated

– The number of parameters that need to be estimated and represented 

increases as we use higher model order   Cost of overmodeling

– Can balance modeling error and the cost of going to higher model by 

imposing a penalty term that increases with the model order
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A Few Commonly Used Criteria

 Akaike Information Criterion (AIC)

– A general estimate of the Kullback-Leibler divergence between 

assumed and true p.d.f., with an order penalty term increasing linearly

– Choose the model order that minimize AIC

 Minimum Description Length (MDL) Criterion

– Impose a bigger penalty term to overcome AIC’s overestimation

– Estimated order converges to the true order as N goes to infinity

iNi p 2    ln)(AIC  
size of 

available data model error

model order: 

i=p for AR(p)

i=p+q for ARMA(p, q)

iNNi p )(log    ln)(MDL  


