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Summary of Related Readings on Part-lll

Overview Haykins 1.16, 1.10

3.1 Non-parametric method
Hayes 8.1; 8.2 (8.2.3,8.2.5); 8.3

3.2 Parametric method
Hayes 8.5, 4.7, 8.4

3.3 Frequency estimation
Hayes 8.6

Review

— On DSP and Linear algebra: Hayes 2.2, 2.3
— On probability and parameter estimation: Hayes 3.1 —3.2
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Motivation

e Implicit assumption by classical methods

— Classical methods use Fourier transform on either windowed data or
windowed autocorrelation function (ACF)

— Implicitly assume the unobserved data or ACF outside the window
are zero => not true in reality

— Consequence of windowing: smeared spectral estimate
(leading to low resolution)

e If prior knowledge about the process is available

— We can use prior knowledge and select a good model to
approximate the process

— Usually need to estimate fewer model parameters (than non-
parametric approaches) using the limited data points we have

— The model may allow us to better describe the process outside the
window (instead of assuming zeros)
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General Procedure of Parametric Methods

e Select a model (based on prior knowledge)
e Estimate the parameters of the assumed model

e Obtain the spectral estimate implied by the model (with
the estimated parameters)
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Spectral Estimation using AR, MA, ARMA Models

e Physical insight: the process is generated/approximated by filtering
white noise with an LTI filter of rational transfer func H(z)

e Use observed data to obtain estimates #(k) for small k’s
- (k) of larger lags are implicitly extrapolated by the estimated model

e Relation between r(k) and filter parameters {a,} and {b,}
— PARAMETER EQUATIONS from Section 2.1.2(6)
— Solve the equations using 7 (k) to obtain estimated filter parameters
— Use the p.s.d. implied by the estimated model as spectral estimate

e Deal with nonlinear parameter equations
— Try to convert/relate them to the AR models that have linear equations
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Review: Parameter Equations

Yule-Walker equations (for AR process)
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3.2.1 AR Spectral Estimation

(1) Review of AR process

— The time series {x[n], x[n—1], ..., x[n—m]} 1s a realization of

an AR process of order M 1f it satisfies difference equation
x|n] +a x|n=1]+ ... +ay,x[n—M] = v[n]

where {v[n]} is a white noise process with variance o .

— Generating an AR process with parameters {d; }:

H(z)= Ml
UTK N =7 1+;aiz !
def 1
~A(2)
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P.S.D. of An AR Process

Recall: the p.s.d. of an AR process {x[n]} is given by

2
A o
P.(z)=———
AR( ) A(Z)A*(I/Z*)
Uz=¢=e*"
2
A o
P ()= ;
1+Z&ke_12’7k
k=1
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Procedure of AR Spectral Estimation

e Observe the available data points x[0], ..., x[N-1], and
Determine the AR process order p

e Estimate the autocorrelation functions (ACF) k=0, ...,p

Biased (low variance) Unbiased (may not non-neg. definite)
N—-1-k N—-1-k
f(k)_ Zx[nJrk r(k)—— Zx[n+k [1]

e Solve {a;} from the Yule-Walker equations (or the normal
equations of forward linear prediction)

— Recall for an AR process, the normal equation of FLP is

equivalent to the Yule-Walker equation

2
O

e ODbtain estimated power spectrum: P ()= 1437 40 ?
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3.2.2 Maximum Entropy Spectral Estimation (MESE)

e Viewpoint: Extrapolations of ACF

- {7[0], ... #|p]} is known; there are generally an infinite number of
possible extrapolations for »(k) at larger lags

— As long as {r[pt+1], r[pt2], ...} guarantee that the correlation
matrix 1s non-negative definite, they all form valid ACFs for w.s.s.

e Maximum entropy principle

— Perform extrapolation s.t. the time series characterized by the
extrapolated ACF has maximum entropy

— 1.e., the time series will be the least constrained thus most random
one among all series having the same first (p+1) ACF values

=> Maximizing entropy leads to estimated p.s.d. be the
smoothest one

— Recall white noise process has flat p.s.d.
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MESE for Gaussian Process: Formulation

For a Gaussian random process, the entropy per sample
IS proportional to

j_% In P(f)df

Thus the max entropy spectral estimation is

max ﬁ In P(f)df

subject to
1

J‘_Elp(f)ejzfy’kdf =r(k), fork=0.,1,..., p

2
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MESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution
can be found as

f)ME(f):

2
O

2
P oA ik
‘1 + Zk:1 a,e ‘

where {d,} are found by solving the Yule-Walker equations
given the estimated ACF values 7[0], ... 7|p].

e For Gaussian processes, the MESE is equivalent to AR
spectral estimator and the Py (f) is an all-pole spectrum

— Different assumptions on the process: Gaussian vs. AR processes
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3.2.3 MA Spectral Estimation
An MA(q) model

x[n]= Zq:bkv[n -k] = B(z)= Zq:bkz_k

can be used to define an MA spectral estimator

2
q

Pua(f) =01+ be ™

k=1

Recall important results on MA process:

(1) The problem of solving for b, given {r(k)} is to solve a set of
nonlinear equations;

(2) An MA process can be approximated by an AR process of
sufficiently high order.
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Basic Idea to Avoid Solving Nonlinear Equations

Consider two processes:

e Process #1: an approximated high-order AR process in
the observed data x|[n]

— We model x[n] as a high-order AR process generated by 1/A4(z) filter

w wh‘t‘s n]
e B3 LT : AR Z i
5§ ‘

3
— XCw]

e Process #2: an MA process y[n] generated by A(z) filter

— Since we know A(z), we can obtain y[n]’s autocorrelation values 7, (k)

— We model process #2 as an AR(g) process => the filter would be 1/B(z)
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Use AR Model to Help Finding MA Parameters

— For simplicity, we consider the real coefficients for the MA model.

Note P, (z)=0’B(z)B(z™")

To approximate it with an AR(L) model, i.e.,
2

L
PMA(Z)z ~ GA WhereA(z):1+Z&kZ—k
A(2)A(z ™) L>>q ©

= ()i~ 5 ;(Zl)

order L order g

s The RHS represents power spectrum of an AR(q) process
% The inverse ZT of LHS is the ACF of the AR(q) process
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Recall: ACF of Output Process After LTI Filtering

| hLn] \-——*& .

stable LTI filter

K [~y (&)
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Use AR to Help Finding MA Parameters (cont’d)

Let x[n] = w[n]~N(0,02) i.i.d., and h[n] = a,,, we have

L—k
r,(k) = o, Z G, Atk for lag k
n=0

=> Knowing autocorrelation sequence r, (k), the best AR

coefficients {b,} for process #2 can be obtained by direct
matrix inverse or Levinson-Durbin recursion.

* Note that the best AR coefficients for process #2 are
actually the best MA coefficients for process #1.
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B R(3) 2
Durbin’s Method 5 yen

1. Use Levinson-Durbin recursion and solve for

ey R —- R0 [R] (R
1
Ry ey Ry || B |= |
, « 1 * N
R — = Ry J b

I\ N--K
where UK = LS xIn) X (i)
— We first approximate the observed data sequence {x[0], ..., x[N]}
with an AR model of high order (often pick L > 4q)

— We use biased ACF estimator (1/N) to ensure nonnegative
definiteness and smaller variance than unbiased estimator [1/(N—k)]
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- ’PH:LE.SS #2
Durbin Method (cont’d) ss

HES

—

2. Fit an AR(g) model to the data sequence {l,qa,,4,,...,a, }

N ™\ . LN ~

[ Tp(0) Tl ——- M%) b —\ (0]
Calt) oo M) || (=

' h N : h ?l(fr)

- F& (Z-1) — - - Ag_@) bf«; y - O

where ﬁ‘(m_ Y ;'J:ﬁn&mk

=0

— The result {b,} 1s the estimated MA parameters for original {x[n]}

— Note we add 1/(L+1) factor to allow the interpretation of (k) as an
autocorrelation function estimator
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3.2.4 ARMA Spectral Estimation

Recall the ARMA(p, q) model

x[n]= —Zp: a,x[n—k] +Zq: bvin—k]

We define an ARMA(p, q) spectral estimator

f)ARMA(f) — &2

q N .
1+ Zbke_f 2k

k=1

2
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Modified Yule-Walker Equations

Recall the Yule-Walker Egs. for ARMA(p, q) process

i BK
i ] — — #mmmm%&ﬁ EQTb ek ]
==} =0
F’ k’-:—oflm“'%”
L] = _%o.uu DeUet] s 94

We may use equations for k = g+1 to solve for {a}

(Y NE) - TGyl THEDT
M(gx) M) : OIU— =) )

! OLP J _I‘(@{-p)_}

_—

t
. .

u\»@a—P—o - - M

= B @-_—‘E “Modified Yule-Walker Equations”
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Estimating ARMA Parameters

1. By solving the modified Yule-Walker egs., we obtain
A P
A(z) =1+ Z a,z"
k=1

2. We eliminate the AR component by filtering x[n] with
FIR filter A(z) to obtain an approximate MA(q) process:

B(z)

ADX(2) = A(2) AT

W(z) =~ B(z)W(2)

3. Coefficients {b; } can be estimated by Durbin’s method.
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Extension: LSMYWE Estimator

e Performance by solving p modified Yule-Walker equations
followed by Durbin’s method

— May yield highly noisy spectral estimates (esp. when the matrix
involving ACF is nearly singular due to poor ACF estimates)

e Improvement: use more than p equations to solve {a, ..., d,}
In a least squared sense

— Use Yule-Walker equations for k= (¢+1), ..., M: min||t — Sa|?
— Least-squares solution: & = (S7S)~1S"t
— Then obtain {b, } by Durbin’s method

= “Least-Squares Modified Yule-Walker Equations”™ (LSMYWE)

Ref: review in Hayes’ book Sec.2.3.6 on least square solution
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Comparison of Different Methods: Revisit

e Test case: a process consists of narrowband components
(sinusoids) and a broadband component (AR)

— x[n] = 2cos(win) + 2 cos(wan) + 2 cos(wzn) + z[n],
where z[n] = —ayz[n — 1] +v[n],a; = —0.85,07 = 0.1,
w1 /2w = 0.05, wy /27 = 0.40, w3 /21 = 0.42.

2
:

— N=32 data points are available
=>» periodogram resolution /= 1/32

8
:

e Examine typical characteristics
of various non-parametric and
parametric spectral estimators

10.00 '
=10.00 / |
- !

= 30.00 -
=050 =030 =010 0.0 0.30 050 2%
Freguency

True power mpecten] denaity (dB)

(Fig.2.17 from Lim/Oppenheim book)

NCSU ECE792-41 Statistical Methods for Signal Analytics Parametric spectral estimation



[a——

Power speciral density [(dB)

Power spectral density (dB)

X000
10.00
= 10,00
= 30.00 ; e
=050 =030 =0,10 0,10 0.30 o5 2n
Freguency
ib} Perisdogram
30.00
10.00 |
= 10,00 -
= 30,00 L
=050 =030 =0.10 Q.10 0.30 050 Ir
Frequency

(di MenEmum variance speciral estimator

=
3

thiong e Windod
0:‘3[0

N N

B

Power speeeteal _1; (Bl

=30.00
= 30,00 L
050 =030 -0.0 0.10 0.30 050 2=
Freguency
lel Blackman-Tukey
50.00
=
b
.
F 00
-
: /\
E 10.00 |
|
E =000 |
P L
=30.00 . L
-0.50 =030 =010 8 1] 0.30 0,60 2=
Frsguency

thue psd.

NCSU ECE792-41 Statistical Methods for Signal Analytics

Parametric spectral estimation



= B = S0.00 - - o
g »o g WS AR(IS) in Durdins
. i
E 10,00 |- TE’ 10.00
= E |
E =10.00 |- £ -10.00
E - 0,00 , . , L E =30.00 =
-0.50 -0 =00 010 030 050 2w =050 =030 =010 00 030 080 2=
'F:rl:qﬂtl‘rw Freguenpey
le) Auviocorrelation 1il Durbin
50.00 ARMA (T7:3) , M=(§ (12 equmrs )
g g .
E i
] i
& g
H "”-WlL g -10.00
= | ARMA (7:3)
~30.00 | = - 30.00 . W
=030 =03 =010 01 0% OS0 2e -050 -0.30 -010 0.0 030 0.50 27
Freguency Frequency
(1) Modified Yule-Walker equations ik} Least-squares modifeed ¥ube - Walker sguations

NCSU ECE792-41 Statistical Methods for Signal Analytics Parametric spectral estimation



3.2.5 Model Order Selection

e The best way to determine the model order is to base it on
the physics of the data generation process

e Example: speech processing

— Studies show the vocal tract can be modeled as an all-pole filter
having 4 resonances in a 4kHz band, thus at least 4 pairs of
complex conjugate poles are necessary

=>» Typically 10—12 poles are used in an AR modeling for speech

e \When no such knowledge is available, we can use some
statistical test to estimate the order

Ref. for in-depth exploration: “Model-order selection,” by P. Stoica and Y. Selen,
IEEE Signal Processing Magazine, July 2004.
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Considerations for Order Selection

e Modeling error

— Modeling error measures the (statistical) difference between the true
data value and the approximation by the model

¢ e.g., estimating linear prediction MSE in AR modeling

— Usually for a given type of model (e.g., AR, ARMA), the modeling
error decreases as we increase the model order

e Balance between the modeling error and the amount of
model parameters to be estimated

— The number of parameters that need to be estimated and represented
increases as we use higher model order =» Cost of overmodeling

— Can balance modeling error and the cost of going to higher model by
imposing a penalty term that increases with the model order
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A Few Commonly Used Criteria

Akaike Information Criterion (AlC)

— A general estimate of the Kullback-Leibler divergence between
assumed and true p.d.f., with an order penalty term increasing linearly

— Choose the model order that minimize AIC

AIC(G)=Nlng, + 2i
size of/‘\ AN ? model order:

: model error =p for AR(p)
available data i=p+q for ARMA(p, q)

Minimum Description Length (MDL) Criterion

— Impose a bigger penalty term to overcome AIC’s overestimation

— Estimated order converges to the true order as N goes to infinity

MDL@G)=Nlng, + (logN)i
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