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Recall:  Limitations of Periodogram and ARMA

( Fig.2.17 from Lim/Oppenheim 
Book on Adv DSP Topics )

True p.s.d.
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Motivation

 Random process studied in the previous section: 

– w.s.s. process modeled as the output of a LTI filter driven by a white 
noise process ~  smooth p.s.d. over broad freq. range

– Parametric spectral estimation:  AR, MA, ARMA

 Another important class of random processes:
A sum of several complex exponentials in white noise

– The amplitudes and p different frequencies of the complex 
exponentials are constant but unknown

 Frequencies contain desired info:  velocity (sonar), formants (speech) …

– Estimate the frequencies taking into account of the properties of 
such process



NCSU ECE792-41 Statistical Methods for Signal Analytics Frequency estimation  [4]

The Signal Model
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Recall:  Single Complex Exponential Case

E[ x( ) w( ) ] = E[x( )] E[w( )] = 0

this crosscorr term vanish 

because of uncorrelated *and* 

zero mean for either x( ) or w( ).



Deriving Autocorrelation Function
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Deriving Correlation Matrix

 May bring rx(k) into the correlation matrix

 Or from the expectation of vector’s outer product and use 
the correlation analysis from last page
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An MxM correlation matrix for {x[n]} (M>p):

 full rank

where
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 full rank

where
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Summary:  Correlation Matrix for the Process



H

ii ee has rank 1 (all columns are related by a factor)

The MxM matrix Rs has rank p, and has only 

p nonzero eigenvalues.
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Correlation Matrix for the Process (cont’d)
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Review:  Rank and Eigen Properties

 Multiplying a full rank matrix won’t change the rank of a matrix

i.e.  r(A) = r(PA) = r(AQ) 

where A is mxn, P is mxm full rank, and Q is nxn full rank. 

– The rank of A is equal to the rank of A AH and AH A.

– Elementary operations (which can be characterized as multiplying by a full 

rank matrix) doesn’t change matrix rank: 

 including interchange 2 rows/cols; multiply a row/col by a nonzero 
factor; add a scaled version of one row/col to another.

 Correlation matrix Rx in our model has full rank. 

 Non-zero eigenvectors corresponding to distinct eigenvalues 
are linearly independent

 det(A) = product of all eigenvalues; so a matrix is invertible iff all 
eigenvalues are nonzero.

(see Hayes Sec.2.3 review of linear algebra)
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Eigenvalues/vectors for Hermitian Matrix

 Multiplying A with a full rank matrix won’t change rank(A)

 Eigenvalue decomposition

– For an nxn matrix A having a set of n linearly independent 

eigenvectors, we can put together its eigenvectors as V  s.t.

A = V diag(1, 2, … n) V
−1

 For any nxn Hermitian matrix

– There exists a set of n orthonormal 

eigenvectors

– Thus V is unitary for Hermitian 

matrix A, and

A = V diag(1, 2, … n) V
H = 1 v1 v1

H  +…+ n vn vn
H

(see Hayes Sec.2.3.9 review of linear algebra)



Let vi be an eigenvector of Rx with the 

corresponding eigenvalue λi, i.e., Rx vi = λi vi

i.e., vi is also an eigenvector for Rs, and 

the corresponding eigenvalue is 
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nonzero 

eigenvalues
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Eigen Analysis of the Correlation Matrix
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i.e., the p column vectors are linearly independent
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2

M x p,  full rank=p

i.e., the p column vectors are linearly independent

M x p,  full rank=p

i.e., the p column vectors are linearly independent
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Signal Subspace and Noise Subspace

Frequency estimation  [13]



Since Rx and Rs are Hermitian matrices,

the eigenvectors are orthogonal to each other:

Recall

So it follows that 
noise eigenvector

signal 

eigenvectors

sig. vector
SIGNAL 

SUBSPACE
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Relations Between Signal and Noise Subspaces



Discussion:  Complex Exponential Vectors
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Recall                          for l=1, … p;  i = p+1, … M

Knowing eigenvectors of correlation matrix Rx, we can use 

these orthogonal conditions to find the frequencies { fl }:

We form a frequency estimation function

Here αi are properly 

chosen constants 

(weights) for producing 

weighted average for 

projection power with all 

noise eigenvectors
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Frequency Estimation Function: General Form
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Pisarenko Method for Frequency Estimation (1973)

 Assumes the number of complex exponentials, p, is 

known, and the first p+1 lags of the autocorrelation 

function, r(0), …, r(p), are known/have been estimated.

 The eigenvector corresponding to the smallest 

eigenvalue of R(p+1)×(p+1) is the sole component of the 

noise subspace.

 The equivalent frequency estimation function is:
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We can estimate the sinusoidal 

frequencies by finding the p−1 zeros 

on unit circle:
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Interpretation of Pisarenko Method

    Tpvvv ,...,0  where, min 



ki fv  at  )(eigvector  sig of DTFT

Once the frequencies of the complex exponentials are 

determined, the amplitudes can be found from the 

eigenvalues of Rx:
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Estimating the Amplitudes
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Limitations of Pisarenko Method

 Need to know or accurately estimate the # of sinusoids, p.

 Inaccurate estimation of autocorrelation values

=> Inaccurate eigen results of the (estimated) correlation matrix.

=> p zeros on unit circle in frequency estimation function may not 

be on the right places.

 What if we use a larger M×M correlation matrix?

– More than one eigenvectors will form the noise subspace: Which of 

M−p eigenvectors shall we use to check orthogonality with e(f) ?

– For one particular eigenvector chosen, there are M−1 zeros: 

 p zeros correspond to the true frequency components, whereas

 M−1−p zeros lead to false peaks.
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MUltiple SIgnal Classification (MUSIC) Algorithm

 Basic idea of MUSIC algorithm

– Reduce spurious peaks of freq. estimation function by averaging over 

the results from M−p smallest eigenvalues of the correlation matrix 

=> i.e., to find those freq. that give signal vectors consistently 

orthogonal to all noise eigenvectors.



NCSU ECE792-41 Statistical Methods for Signal Analytics Frequency estimation  [22]

MUSIC Algorithm

The frequency estimation function

where

Locate 

the peaks
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Example-1

( Fig.8.31 from M. Hayes Book; 
examples are for 6x6 correlation 
matrix estimated from 64-value 
observations )



Example-2
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( Fig.8.37 & Table 8.10 from M. Hayes Book;  
overlaying results of 10 realizations with 64 
observed signal points each. )


