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True power specteal density (dB)

Power speciral density (dii}

Recall: Limitations of Periodogram and ARMA
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Motivation

e Random process studied in the previous section:

— W.S.S. process modeled as the output of a LTI filter driven by a white
noise process ~ smooth p.s.d. over broad freg. range

— Parametric spectral estimation: AR, MA, ARMA

e Another important class of random processes:
A sum of several complex exponentials in white noise

X[n] = Zp:A explJ(27z Tn+¢)]+w[n]

— The amplitudes and p different frequencies of the complex
exponentials are constant but unknown

¢ Frequencies contain desired info: velocity (sonar), formants (speech) ...

— Estimate the frequencies taking into account of the properties of
such process
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The Signal Model

x[n] = _zp:Aej¢ie12ﬁi“ +w{n]

n=01....N—1 (observe N samples)

. . . 2
win] white noise, zero mean, variance O,

A, f real, constant, unknown
=> to be estimated

¢i uniform distribution over [0, 21);

uncorrelated with w[n] and between
different i
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Recall: Single Complex Exponential Case

xtn] = A e (jenforn+ ] \Rﬁ?{f@] G=
ELXLH]J = 0 JE?’FL - ﬂ\\h"_ -\“"‘1 r'f — e V-
ELxUL] XLH-K]} \ T Ty
= E['_ A@_}(PQ@ﬁj‘bﬂ{-@}ﬁﬁ}t}ﬁﬁ(ﬂjﬂ~ﬂr uif--{-dpjjj
- At exp [ (2T ] N \
SLOXTR] s Qoamen s, with Mx(K) = AT exp(garfel)
" ﬁ_L K=10
H/Dn.j: XA+ W) e wede o Bl RI-K] ] = % 5 DAY,

T“Ytk_) — ELYD’"‘J \Z(*_Ln-lcjj = E[(}([nlTM[P\-})(&*EWK‘]+J[&~{@>]
= MU+ Male] (v E(XEIWCY] =0 waoreloded.)
= AP [rhk] + ¢ 8¢

E[ x() w() ] = E[x()] E[w()] =0

this crosscorr term vanish
because of uncorrelated *and* __
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Deriving Autocorrelation Function

x[n] = Zp:Ae”‘i el 4 wln] = Zp:si [n]+w[n]

r (k) = E[x[n]x[n —k]|= EHzp: s [n]+ W[n]} - Zp: s “[n—k]+w'[n— k]ﬂ

E[s,[n]]E[s.[n—Kk]] =0 (forl =m)
r, (k)= Acel#* (forl =m)

o Els, [nw'[n—K]|= Es, [n]JE[w{n — k][ =0
o EM[NW[n—k]|= 02 - S[K]

e Els [n]s, [n—k]|=

=>1,(k) = E[X[n]x[n —k]|= Zp:Azeizﬂfik + 25(K)
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Deriving Correlation Matrix

e May bring r,(k) into the correlation matrix

e Or from the expectation of vector’s outer product and use
the correlation analysis from last page

x[n] = Y5, (0] + win]
R, — " ]| E HZsl[nHW[n]} {z s, [+ " [n]ﬂ

m=1

P
=>R, =Y P eg" +0.]
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Summary: Correlation Matrix for the Process

r.(k) = E[x[n]x"[n—k]|= zp: AZeI?7 4 52 5(K)
2P,

An MxM correlation matrix for {x[n]} (M>p):
Ru= 0w L = fullrank

RE)"" iPL e-{,____{,

- ¢ 44Tt —12wfo(m~) ;T
where €i=[1,¢& \lm‘f S4j;---é»\1nj( J
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Correlation Matrix for the Process (cont’d)

R _ p H
= X e H
1’P. F.g_( ¥
= [@:t,e_"/‘ ep) P> e,
—_— = N :
=5 » Pp B
MX P z
H =
= SDS pxp

e giH has rank 1 (all columns are related by a factor)

The MxM matrix R, has rank p, and has only
p nonzero eigenvalues.
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Review: Rank and Eigen Properties

e Multiplying a full rank matrix won’t change the rank of a matrix

l.e. r(A) =r(PA) =r(AQ)
where A is mxn, P is mxm full rank, and Q is nxn full rank.

— The rank of A is equal to the rank of A AH and A A.

— Elementary operations (which can be characterized as multiplying by a full
rank matrix) doesn’t change matrix rank:

¢ including interchange 2 rows/cols; multiply a row/col by a nonzero
factor; add a scaled version of one row/col to another.

e Correlation matrix Rx in our model has full rank.

e Non-zero eigenvectors corresponding to distinct eigenvalues
are linearly independent

e det(A) = product of all eigenvalues; so a matrix is invertible iff all
eigenvalues are nonzero.

(see Hayes Sec.2.3 review of linear algebra)
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Eigenvalues/vectors for Hermitian Matrix

e Multiplying A with a full rank matrix won’t change rank(A)
e Eigenvalue decomposition

— For an nxn matrix A having a set of n linearly independent
eigenvectors, we can put together its eigenvectors as V s.t.

A=V diag(h,, Ay, ... Ay V7!

Ay = XaUs
e For any nxn Hermitian matrix ALY, Vo] hY
— There exists a set of n orthonormal ~ -
eigenvectors = M"l { ‘}\v\]
— Thus V is unitary for Hermitian v

matrix A, and
A=V diag(A,, Ay, ... A) VA=A, v, v+ A v, v P

(see Hayes Sec.2.3.9 review of linear algebra)
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Eigen Analysis of the Correlation Matrix

Let v; be an eigenvector of R, with the
corresponding eigenvalue A, i.e., R, v, = A v,

D Ve = Rshi + 0w Vi = AW

S Rs Ul = (N— 0w ) Yy

l.e., v; Is also an eigenvector for R, and
the corresponding eigenvalue Is

A% =2 —GVZV
R. hasp
( ) S
SoXG = + O :>0T;~\ (=t2 ---P nonzero )
o (= PHl, - M igenvalues
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Signal Subspace and Noise Subspace

For (=P#l,--- M, st’y_i: O*ﬂé

Also, Rs= $DS" ;

SDSH V¢ =o for i=p+1, ..., M

—
M x p, full rank=p

l.e., the p column vectors are linearly independent
el H = 0
> STVi=L H 9 | =1,2,...,p
Since $=C2u--2p1 = V=0, 0y

d e Y L SpodVpe Ut

SIGNAL SUBSPACE NOISE SUBSPACE
eigenvalue = ¢/
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Relations Between Signal and Noise Subspaces

Since R, and R, are Hermitian matrices,
the eigenvectors are orthogonal to each other:
Vet V5 ¥ %]
= spang W, .- Upf L 5P Lper, D

Recall SPM (¢ ~~- ,Q_P}f . Sfmﬁyp{_‘, y“f,

So it follows that AV, noise eigenvector

- signal
SPM§ B e p k T eigenvectors "\\\ Y
Spowg Vio---Vpy v e2 SIGNAL

e sig. vector SUBSPACE
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Discussion: Complex Exponential Vectors

_ _ oMo 1T
g(f):[l,e j2r g-idd  g-i2a(M 1)f]

1— ejZﬂ(fl—fz)M

M -1
e (f,)-e(f,)=> /(" = It 1, # 1,
k=0

If f,— f, =2, forsomeintegera = e" (f,)-e(f,)=0

1 — el27(fi-12)

SPM e ~--&pt L sf"*\«'ﬂl}px—l. -~ Ump,

/Kyb noise eigenvector

Spwfh%@(,\-.@_p}: signal

eigenvector "\\\ -2
spamr V- Vpy t_g‘/é\ ¢2  SIGNAL

e, = sig. vector SUBSPACE




Freguency Estimation Function: General Form

H
Recall €, V; = 0 forl=1, ..p;, i=p+l, . M

Knowing eigenvectors of correlation matrix R,, we can use
these orthogonal conditions to find the frequencies {f, }:

e (f)v, =07

We form a frequency estimation function

P(f) = 1 Here a, are properly
(1)= M 5 chosen constants
Z a, ‘Q( f) v ‘ (weights) for producing

i=p+1 weighted average for

— |:3( f) is LARGE at f f projection power with all
1*"77p  noise eigenvectors
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Pisarenko Method for Frequency Estimation (1973)

= Assumes the number of complex exponentials, p, Is
known, and the first p+1 lags of the autocorrelation
function, r(0), ..., r(p), are known/have been estimated.

» The eigenvector corresponding to the smallest
eigenvalue of R p.q)«p+1) IS the sole component of the
noise subspace.

* The equivalent frequency estimation function is:

p(f)=—
e(f)" Vo
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Interpretation of Pisarenko Method

since €"(f )V, =0 , wherev,,, =[v(0)....v(p)]

P .
=3, (k)e!?™ =0
k=0

e, DTFTRV,()},_; =0 R

We can estimate the sinusoidal - CDL

frequencies by finding the p—1 zeros
on unit circle:

T

(

Re

p
Z[Vi ()] = Zvi (k) z* =0 the angle of zeros reflects the freq.
k=0
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Estimating the Amplitudes

Once the frequencies of the complex exponentials are
determined, the amplitudes can be found from the
eigenvalues of R,:

Ryvi =4y, (1=12,.., p) normalize v, s.t.
H
vi'v, =1
:>VHR \_/:ﬂ,l\_/H\_/:/’L Vi Y

P
Recall R, =) Pe.e, +o.l
k=1

2
:Zp:Pk‘gf\_/i‘ =1 —c2, i=1..,p
k=1 —y——

DTFT of sig eigvector v;(-) at — f, =» Solve p equations for { P, }
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Limitations of Pisarenko Method

e Need to know or accurately estimate the # of sinusoids, p.

e |naccurate estimation of autocorrelation values
=> |naccurate eigen results of the (estimated) correlation matrix.

=> p zeros on unit circle in frequency estimation function may not
be on the right places.

e What if we use a larger MxM correlation matrix?

— More than one eigenvectors will form the noise subspace: Which of
M—p eigenvectors shall we use to check orthogonality with e(f) ?

— For one particular eigenvector chosen, there are M—1 zeros:

- p zeros correspond to the true frequency components, whereas
- M—1-p zeros lead to false peaks.
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MUItiple Slgnal Classification (MUSIC) Algorithm

e Basic idea of MUSIC algorithm

— Reduce spurious peaks of freq. estimation function by averaging over
the results from M—p smallest eigenvalues of the correlation matrix

=> |.e., to find those freq. that give signal vectors consistently
orthogonal to all noise eigenvectors.
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MUSIC Algorithm

The frequency estimation function

A
PMUS\C—Cj> S

= v Ve

P
Locate JL
the peaks

where ()= Q“{'mj , V= Ypa, - ?_/M]
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FREQUENCY ESTIMATION

455

Example-1

( Fig.8.31 from M. Hayes Book;
examples are for 6x6 correlation
matrix estimated from 64-value
observations)
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Figure 8.31 Frequency estimation functions of a single complex exponential in
white noise. (a) The frequency estimation function that uses all of the noise eigen-
vectors with a weighting a; = 1. (b) An overlay plot of the frequency estimation
functions V;(e’®) = 1/|ef'v;|? that are derived from each noise eigenvector.



Example-2

Table 8.10 Noise Subspace Methods for Frequency

Estimation
v D jw 1
Pisarenko P, ) = T
" ) 1
MUSIC Pyy(e’®) = 5
Y Il
i=p+l1
_ . 1
Eigenvector Method Pev(e?")=—

Minimum Norm

Pun(ei®) =

i=p+l

leHa|?

Z %|eﬁvi|2

a= A.P,,ll]

PRINCIPAL COMPONENTS SPECTRUM ESTIMATION 469
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Figure 8.37 The frequency estimation functions for a process consisting of four complex exponen-
tials in white noise using (a) the Pisarenko harmonic decomposition, (b) the MUSIC algorithm, (c)
the eigenvector method and (d) the minimum norm algorithm.

( Fig.8.37 & Table 8.10 from M. Hayes Book;
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overlaying results of 10 realizations with 64
observed signal points each. )



