ECE792-41 Part III

Part III Spectrum Estimation 3.3 Subspace Approaches to Frequency Estimation

Electrical & Computer Engineering North Carolina State University

Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland, College Park. Contact: chauwai.wong@ncsu.edu.

NCSU ECE792-41 Statistical Methods for Signal Analytics

Recall: Limitations of Periodogram and ARMA

Motivation

- Random process studied in the previous section:
	- w.s.s. process modeled as the output of a LTI filter driven by a white noise process ~ smooth p.s.d. over broad freq. range
	- Parametric spectral estimation: AR, MA, ARMA
- Another important class of random processes: A sum of several complex exponentials in white noise

$$
x[n] = \sum_{i=1}^{p} A_i \exp[j(2\pi f_i n + \phi_i)] + w[n]
$$

- The amplitudes and *p* different frequencies of the complex exponentials are constant but unknown
	- *Frequencies contain desired info: velocity (sonar), formants (speech) …*
- Estimate the frequencies taking into account of the properties of such process

The Signal Model	
$x[n] = \sum_{i=1}^{p} A_i e^{j\phi_i} e^{j2\pi j_i n} + w[n]$	
$n = 0, 1, ..., N - 1$ (observe <i>N</i> samples)	
$w[n]$	white noise, zero mean, variance σ_w^2
A_i, f_i	real, constant, unknown
→ to be estimated	
ϕ_i	uniform distribution over [0, 2π);
uncorrelated with $w[n]$ and between different <i>i</i>	

Recall: Single Complex Exponential Case

$$
X[n] = A exp [j(2\pi f_0 n + \phi)]
$$

\n
$$
E[X[n]] = 0 \quad \forall n
$$

\n
$$
E[X[n]] = 0 \quad \forall n
$$

\n
$$
E[X[n]] = E[A exp [j(2\pi f_0 n + \phi)] \cdot A exp [j(2\pi f_0 n - 2\pi f_0 k + \phi)]]
$$

\n
$$
= A^2 \cdot exp [j(2\pi f_0 k)]
$$

\n
$$
\therefore
$$
 X[n] is zero-mean N.5.5. With $\Gamma_X(k) = A^2 exp (j2\pi f_0 k)$
\n
$$
Y[n] = X[n] + N[n]
$$
 with noise. $E[NM] \wedge [n-k]] = \begin{cases} 0^2 & k=0 \\ 0 & k \end{cases}$
\n
$$
Y[k] = E[Y[n] \wedge [n-k]] = E[(X[n] + N[n]) \times [n-k] + N[n+1]
$$

\n
$$
= \Gamma_X[k] + \Gamma_W[k] \quad (\because E[X[n] \wedge [n]) = 0 \quad \text{uncorrelated})
$$

\n
$$
= A^2 exp [j2\pi f_0 k] + \sigma^2 S(k)
$$

\n
$$
E[X(N) \wedge [n]) = E[X(N)] = 0
$$

this crosscorr term vanish because of uncorrelated *and* zero mean for either $x()$ or $w()$.

Deriving Autocorrelation Function

$$
x[n] = \sum_{i=1}^{p} A_i e^{j\phi_i} e^{j2\pi f_i n} + w[n] = \sum_{i=1}^{p} s_i[n] + w[n]
$$

$$
r_x(k) = E[x[n]x^*[n-k]] = E\left[\sum_{i=1}^{p} s_i[n] + w[n]\right] \cdot \left[\sum_{m=1}^{p} s_m^*[n-k] + w^*[n-k]\right]
$$

•
$$
E[s_l[n]s_m^*[n-k]] = \begin{cases} E[s_l[n]]E[s_m[n-k]]^* = 0 & \text{ (for } l \neq m) \\ r_{s_m}(k) = A_m^2 e^{j2\pi f_m k} & \text{ (for } l = m) \end{cases}
$$

 $[s_{i}[n]w^{*}[n-k]]=E[s_{i}[n]]E[w[n-k]]^{*}=0$ $*$ r \overline{I} \overline{I} r \overline{I} r \overline{I} r \overline{I} $E[s_i[n]w^{n}[n-k]] = E[s_i[n]]E[w[n-k]] =$

$$
\bullet E[w[n]w^*[n-k]] = \sigma_w^2 \cdot \delta[k]
$$

$$
= \sum r_x(k) = E[x[n]x^*[n-k]] = \sum_{i=1}^p A_i^2 e^{j2\pi f_i k} + \sigma_w^2 \delta(k)
$$

 xy estimation $[6]$

Deriving Correlation Matrix

- May bring $r_{x}(k)$ into the correlation matrix
- Or from the expectation of vector's outer product and use the correlation analysis from last page

$$
\underline{x}[n] = \sum_{i=1}^{p} \underline{s}_{i}[n] + \underline{w}[n]
$$

$$
R_{x} = E[\underline{x}[n] \underline{x}^{H}[n]] = E\left[\left[\sum_{l=1}^{p} \underline{s}_{l}[n] + \underline{w}[n]\right] \cdot \left[\sum_{m=1}^{p} \underline{s}_{m}^{H}[n] + \underline{w}^{H}[n]\right]\right]
$$

$$
\Rightarrow R_{x} = \sum_{i=1}^{p} P_{i} e_{i} e_{i}^{H} + \sigma_{w}^{2} I
$$

Summary: Correlation Matrix for the Process

$$
r_x(k) = E\big[x[n]x^*[n-k]\big] = \sum_{i=1}^p A_i^2 e^{j2\pi j x} + \sigma_w^2 \delta(k)
$$

$$
\triangleq P_i
$$

An MxM correlation matrix for {x[n]} (M>p):

$$
R_{x} = R_{s} + R_{w}
$$

\n
$$
R_{w} = \sigma_{w}^{2} \mathbf{I} \longrightarrow \text{full rank}
$$

\n
$$
R_{s} = \sum_{i=1}^{p} p_{i} \underline{e}_{i} \underline{e}_{i}^{H}
$$

\nwhere $\underline{e}_{i} = [1, \overrightarrow{e}^{j2\pi f_{i}}, \overrightarrow{e}^{j4\pi f_{i}}, \dots \overrightarrow{e}^{j2\pi f_{i}(w+1)}]$

Correlation Matrix for the Process (cont'd)

$$
R_{s} = \sum_{i=1}^{p} P_{i} \underline{e}_{i} \underline{e}_{i}^{H}
$$

=
$$
[\underline{e}_{1}, \underline{e}_{2}, \dots \underline{e}_{p}]^{\begin{bmatrix} P_{1} \\ P_{2} \\ \vdots \end{bmatrix}} \cdot \sum_{i=p}^{\begin{bmatrix} P_{i} \\ P_{i} \\ \vdots \end{bmatrix}} \begin{bmatrix} \underline{e}_{1}^{H} \\ \underline{e}_{2}^{H} \\ \vdots \end{bmatrix}
$$

=
$$
S \cdot D S^{H}
$$

H $e_i e_i$ has rank 1 (all columns are related by a factor) The MxM matrix R_s has rank p, and has only *p* nonzero eigenvalues.

Review: Rank and Eigen Properties

Multiplying a full rank matrix won't change the rank of a matrix

i.e. $r(A) = r(PA) = r(AQ)$

where A is mxn, P is mxm full rank, and Q is nxn full rank.

- The rank of A is equal to the rank of $A A^H$ and $A^H A$.
- Elementary operations (which can be characterized as multiplying by a full rank matrix) doesn't change matrix rank:
	- *including interchange 2 rows/cols; multiply a row/col by a nonzero factor; add a scaled version of one row/col to another.*
- Correlation matrix Rx in our model has full rank.
- Non-zero eigenvectors corresponding to distinct eigenvalues are linearly independent
- $det(A)$ = product of all eigenvalues; so a matrix is invertible iff all eigenvalues are nonzero.

(see Hayes Sec.2.3 review of linear algebra)

Eigenvalues/vectors for Hermitian Matrix

- Multiplying A with a full rank matrix won't change rank(A)
- Eigenvalue decomposition
	- For an nxn matrix A having a set of n linearly independent eigenvectors, we can put together its eigenvectors as V s.t.

 $A = V diag(\lambda_1, \lambda_2, \dots \lambda_n) V^{-1}$

- For any nxn Hermitian matrix
	- There exists a set of n orthonormal eigenvectors
	- Thus V is unitary for Hermitian matrix A, and

 $A = V diag(\lambda_1, \lambda_2, \dots \lambda_n) V^H = \lambda_1 \underline{v}_1 \underline{v}_1^H + \dots + \lambda_n \underline{v}_n \underline{v}_n^H$

(see Hayes Sec.2.3.9 review of linear algebra)

NCSU ECE792-41 Statistical Methods for Signal Analytics **Figure 10 COV Analytics** Frequency estimation [11]

$$
A \underline{v}_i = \lambda_i \underline{v}_i
$$

\n
$$
A[\underline{v}_1, \underline{v}_2, \underline{J}_1] = [\underline{v}_1, \underline{v}_1, \underline{J}_2] = [\underline{v}_1, \underline{v}_2, \underline{J}_1] = [\underline{v}_1, \underline{v}_2, \underline{J}_2]
$$

Eigen Analysis of the Correlation Matrix

Let \underline{v}_i be an eigenvector of R_x with the corresponding eigenvalue λ_i , i.e., $R_x \underline{v}_i = \lambda_i \underline{v}_i$

$$
\therefore R_x \underline{\nu} i = R_s \underline{\nu} i + \sigma_w^2 \underline{\nu} i = \lambda i \underline{\nu} i
$$

$$
\therefore R_s \underline{\nu} i = (\lambda i - \sigma_w^2) \underline{\nu} i
$$

i.e., $\underline{\mathsf{v}}_{\mathsf{i}}$ is also an eigenvector for $\mathsf{R}_{\mathsf{s}},$ and the corresponding eigenvalue is

$$
\lambda_i^{(s)} = \lambda_i - \sigma_w^2
$$
\n
$$
\lambda_i = \begin{cases}\n\lambda_i^{(s)} + \sigma_w^2 > \sigma_w^2, \quad i = 1, 2, \quad -\cdot P \\
\sigma_w^2 > \quad i = P+1, \quad -\cdot M\n\end{cases}
$$
\n
$$
\begin{cases}\nR_s \text{ has } p \\ \text{nonzero} \\ \text{eigenvalues}\n\end{cases}
$$

Signal Subspace and Noise Subspace

For
$$
i = P+1, \dots M
$$
: $R_S \times \mathcal{L}i = 0 \times \mathcal{L}i$
\nAlso, $R_S = SDS^H$;
\n $\therefore SDS^H \mathcal{L}i = 0$ for i=p+1, ..., M
\n $\overline{M \times p}$, full rank=p

i.e., the p column vectors are linearly independent

$$
\Rightarrow S^H \underline{V} := 0
$$

Since $S = [e_1, \dots e_p] \Rightarrow e_i^H \underline{v}_i = 0, \quad i = p+1, \dots, M$
 \therefore Span $\{e_1, \dots e_p\} \perp$ Span $\{v_{p+1}, \dots v_{m}\}$
SIGNAL SUBSPACE
nonset SUBSPACE

eigenvalue = σ_e^2

Relations Between Signal and Noise Subspaces

Since R_x and R_s are Hermitian matrices,

the eigenvectors are orthogonal to each other:

$$
\underline{v}_{i} \perp \underline{v}_{j} \quad \forall i \neq j
$$
\n
$$
\Rightarrow \text{Span}\{\underline{v}_{1}, \dots \underline{v}_{p}\} \perp \text{Span}\{\underline{v}_{p+1}, \dots \underline{v}_{m}\}
$$
\nRecall
$$
\text{Span}\{\underline{e}_{1}, \dots \underline{e}_{p}\} \perp \text{Span}\{\underline{v}_{p+1}, \dots \underline{v}_{m}\},
$$
\nSo it follows that\n
$$
\text{Span}\{\underline{e}_{1}, \dots \underline{e}_{p}\} = \text{sign vectors}
$$
\n
$$
\underline{v}_{1} \perp \underline{e}_{2} \text{SIGNAL}
$$
\n
$$
\underline{v}_{1} \perp \underline{e}_{2} \text{SIGNAL}
$$

Discussion: Complex Exponential Vectors

$$
\underline{e}(f) = \left[1, e^{-j2\pi f}, e^{-j4\pi f}, \dots, e^{-j2\pi(M-1)f}\right]^T
$$
\n
$$
\underline{e}^H(f_1) \cdot \underline{e}(f_2) = \sum_{k=0}^{M-1} e^{j2\pi(f_1 - f_2)k} = \frac{1 - e^{j2\pi(f_1 - f_2)M}}{1 - e^{j2\pi(f_1 - f_2)}} \text{ if } f_1 \neq f_2
$$
\nIf $f_1 - f_2 = \frac{q}{M}$ for some integer $a \Rightarrow \underline{e}^H(f_1) \cdot \underline{e}(f_2) = 0$
\n
$$
\text{Span}\left\{\underline{e}_1, \dots, \underline{e}_p\right\} \perp \text{Span}\left\{\underline{v}_{p+1}, \dots, \underline{v}_m\right\},
$$
\n
$$
\text{Done eigenvector}
$$
\n
$$
\text{Span}\left\{\underline{v}_1, \dots, \underline{v}_p\right\} = \text{sign vectors}
$$
\n
$$
\text{Span}\left\{\underline{v}_1, \dots, \underline{v}_p\right\} = \text{sign vectors}
$$
\n
$$
\underline{v}_1 \perp \text{sign vectors}
$$
\n
$$
\underline{v}_2 \perp \text{sign}(A)
$$

Frequency Estimation Function: General Form

Recall
$$
e_i^H v_i = 0
$$
 for $i = 1, ..., p$; $i = p+1, ... M$

Knowing eigenvectors of correlation matrix R_{x} , we can use these orthogonal conditions to find the frequencies $\{f_l\}$:

$$
\underline{e}^H(f)\underline{v}_i=0?
$$

We form a frequency estimation function

$$
\hat{P}(f) = \frac{1}{\sum_{i=p+1}^{M} \alpha_i |e(f)^H \underline{v}_i|^2}
$$

\n
$$
\Rightarrow \hat{P}(f) \text{ is LARGE at } f_1, ..., f_p
$$

Here *αⁱ* are properly chosen constants (weights) for producing weighted average for projection power with all noise eigenvectors

Pisarenko Method for Frequency Estimation (1973)

- Assumes the number of complex exponentials, *p*, is known, and the first *p*+1 lags of the autocorrelation function, *r*(0), …, *r*(*p*), are known/have been estimated.
- The eigenvector corresponding to the smallest eigenvalue of $\mathbf{R}_{(p+1)\times(p+1)}$ is the sole component of the noise subspace.
- **The equivalent frequency estimation function is:**

$$
\hat{P}(f) = \frac{1}{\left| \underline{e}(f)^H \underline{v}_{\min} \right|^2}
$$

Interpretation of Pisarenko Method

Since
$$
\underline{e}^H(f) \underline{v}_{\min} = 0
$$
, where $\underline{v}_{\min} = [\underline{v}(0), \dots, \underline{v}(p)]^T$
\n $\Rightarrow \sum_{k=0}^p v_{\min}(k) e^{j2\pi jk} = 0$

i.e.,
$$
\text{DTFT}\lbrace v_i(\cdot) \rbrace_{f=-f_i} = 0
$$

We can estimate the sinusoidal frequencies by finding the *p*−1 zeros on unit circle:

$$
Z[v_i(\cdot)] = \sum_{k=0}^{p} v_i(k) z^{-k} = 0
$$
 the angle of zeros reflects the freq.

Estimating the Amplitudes

Once the frequencies of the complex exponentials are determined, the amplitudes can be found from the eigenvalues of R_{x} :

$$
R_{x} \underline{v}_{i} = \lambda_{i} \underline{v}_{i} \quad (i = 1, 2, ..., p) \quad \text{normalize} \quad \underline{v}_{i} \text{ s.t.}
$$
\n
$$
\Rightarrow \underline{v}_{i}^{H} R_{x} \underline{v}_{i} = \lambda_{i} \underline{v}_{i}^{H} \underline{v}_{i} = \lambda_{i} \qquad \qquad \underline{v}_{i}^{H} \underline{v}_{i} = 1
$$
\n
$$
\text{Recall} \quad R_{x} = \sum_{k=1}^{p} P_{k} \underline{e}_{k} \underline{e}_{k}^{H} + \sigma_{w}^{2} I
$$
\n
$$
\Rightarrow \sum_{k=1}^{p} P_{k} \left[\underline{e}_{k}^{H} \underline{v}_{i} \right]^{2} = \lambda_{i} - \sigma_{w}^{2}, \quad i = 1, ..., p
$$
\n
$$
\text{DTFT of sig eigvector } \underline{v}_{i}(\cdot) \text{ at } -f_{k} \implies \text{Solve } p \text{ equations for } \{P_{k}\}
$$

Limitations of Pisarenko Method

- Need to know or accurately estimate the # of sinusoids, p.
- Inaccurate estimation of autocorrelation values
	- => Inaccurate eigen results of the (estimated) correlation matrix.
	- => *p* zeros on unit circle in frequency estimation function may not be on the right places.
- What if we use a larger MxM correlation matrix?
	- More than one eigenvectors will form the noise subspace: Which of *M−p* eigenvectors shall we use to check orthogonality with $\underline{e}(f)$?
	- For one particular eigenvector chosen, there are *M−*1 zeros:
		- *p* zeros correspond to the true frequency components, whereas
		- *M*−1−*p* zeros lead to false peaks.

MUltiple SIgnal Classification (MUSIC) Algorithm

- Basic idea of MUSIC algorithm
	- Reduce spurious peaks of freq. estimation function by averaging over the results from *M−p* smallest eigenvalues of the correlation matrix
	- => i.e., to find those freq. that give signal vectors **consistently orthogonal** to all noise eigenvectors.

MUSIC Algorithm

The frequency estimation function

$$
\hat{P}_{\text{MUSIC}}(f) = \frac{1}{\sum_{i=P+1}^{M} |\underline{e_{ij}^{H}} \cdot \underline{v_{i}}|^{2}} \qquad \text{[1]}_{\text{LCA}} = \frac{1}{\underline{e^{H}(f)} \cdot \underline{v_{i}}|^{2}} \qquad \text{Locate} \qquad f
$$
\n
$$
= \frac{1}{\underline{e^{H}(f)} \cdot \underline{v_{i}}|^{4} \cdot \underline{e(f)}} \qquad \text{Locate} \qquad f
$$
\nwhere $\underline{e}(f) = \begin{bmatrix} e^{-i\frac{1}{2}i\pi f} \\ \vdots \\ e^{-i\frac{1}{2}\pi f(M-1)} \end{bmatrix}, V = [\underline{v}_{P+1}, \dots, \underline{v}_{M}]$

 \hat{h}

(Fig.8.31 from M. Hayes Book; examples are for 6x6 correlation matrix estimated from 64-value observations)

Figure 8.31 Frequency estimation functions of a single complex exponential in white noise. (a) The frequency estimation function that uses all of the noise eigenvectors with a weighting $\alpha_i = 1$. (b) An overlay plot of the frequency estimation $function sV_i(e^{j\omega}) = 1/|e^Hv_i|^2$ that are derived from each noise eigenvector.
NCSU ECE792-41 Statistical Method

tials in white noise using (a) the Pisarenko harmonic decomposition, (b) the MUSIC algorithm, (c) the eigenvector method and (d) the minimum norm algorithm.

(Fig.8.37 & Table 8.10 from M. Hayes Book; overlaying results of 10 realizations with 64 observed signal points each.)

NCSU ECE792-41 Statistical Methods for Signal Analytics