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Recall:  Limitations of Periodogram and ARMA

( Fig.2.17 from Lim/Oppenheim 
Book on Adv DSP Topics )

True p.s.d.
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Motivation

 Random process studied in the previous section: 

– w.s.s. process modeled as the output of a LTI filter driven by a white 
noise process ~  smooth p.s.d. over broad freq. range

– Parametric spectral estimation:  AR, MA, ARMA

 Another important class of random processes:
A sum of several complex exponentials in white noise

– The amplitudes and p different frequencies of the complex 
exponentials are constant but unknown

 Frequencies contain desired info:  velocity (sonar), formants (speech) …

– Estimate the frequencies taking into account of the properties of 
such process
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The Signal Model
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1, ... ,1,0  Nn (observe N samples)

white noise, zero mean, variance

real, constant, unknown

 to be estimated
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Recall:  Single Complex Exponential Case

E[ x( ) w( ) ] = E[x( )] E[w( )] = 0

this crosscorr term vanish 

because of uncorrelated *and* 

zero mean for either x( ) or w( ).



Deriving Autocorrelation Function
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Deriving Correlation Matrix

 May bring rx(k) into the correlation matrix

 Or from the expectation of vector’s outer product and use 
the correlation analysis from last page
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An MxM correlation matrix for {x[n]} (M>p):

 full rank

where
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where
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Summary:  Correlation Matrix for the Process



H

ii ee has rank 1 (all columns are related by a factor)

The MxM matrix Rs has rank p, and has only 

p nonzero eigenvalues.

NCSU ECE792-41 Statistical Methods for Signal Analytics Frequency estimation  [9]

Correlation Matrix for the Process (cont’d)
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Review:  Rank and Eigen Properties

 Multiplying a full rank matrix won’t change the rank of a matrix

i.e.  r(A) = r(PA) = r(AQ) 

where A is mxn, P is mxm full rank, and Q is nxn full rank. 

– The rank of A is equal to the rank of A AH and AH A.

– Elementary operations (which can be characterized as multiplying by a full 

rank matrix) doesn’t change matrix rank: 

 including interchange 2 rows/cols; multiply a row/col by a nonzero 
factor; add a scaled version of one row/col to another.

 Correlation matrix Rx in our model has full rank. 

 Non-zero eigenvectors corresponding to distinct eigenvalues 
are linearly independent

 det(A) = product of all eigenvalues; so a matrix is invertible iff all 
eigenvalues are nonzero.

(see Hayes Sec.2.3 review of linear algebra)
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Eigenvalues/vectors for Hermitian Matrix

 Multiplying A with a full rank matrix won’t change rank(A)

 Eigenvalue decomposition

– For an nxn matrix A having a set of n linearly independent 

eigenvectors, we can put together its eigenvectors as V  s.t.

A = V diag(1, 2, … n) V
−1

 For any nxn Hermitian matrix

– There exists a set of n orthonormal 

eigenvectors

– Thus V is unitary for Hermitian 

matrix A, and

A = V diag(1, 2, … n) V
H = 1 v1 v1

H  +…+ n vn vn
H

(see Hayes Sec.2.3.9 review of linear algebra)



Let vi be an eigenvector of Rx with the 

corresponding eigenvalue λi, i.e., Rx vi = λi vi

i.e., vi is also an eigenvector for Rs, and 

the corresponding eigenvalue is 
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Rs has p 

nonzero 

eigenvalues
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Eigen Analysis of the Correlation Matrix
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i.e., the p column vectors are linearly independent

eigenvalue = 𝜎𝑒
2

M x p,  full rank=p

i.e., the p column vectors are linearly independent

M x p,  full rank=p

i.e., the p column vectors are linearly independent

NCSU ECE792-41 Statistical Methods for Signal Analytics

Signal Subspace and Noise Subspace

Frequency estimation  [13]



Since Rx and Rs are Hermitian matrices,

the eigenvectors are orthogonal to each other:

Recall

So it follows that 
noise eigenvector

signal 

eigenvectors

sig. vector
SIGNAL 

SUBSPACE
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Relations Between Signal and Noise Subspaces



Discussion:  Complex Exponential Vectors
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Recall                          for l=1, … p;  i = p+1, … M

Knowing eigenvectors of correlation matrix Rx, we can use 

these orthogonal conditions to find the frequencies { fl }:

We form a frequency estimation function

Here αi are properly 

chosen constants 

(weights) for producing 

weighted average for 

projection power with all 

noise eigenvectors
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Frequency Estimation Function: General Form
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Pisarenko Method for Frequency Estimation (1973)

 Assumes the number of complex exponentials, p, is 

known, and the first p+1 lags of the autocorrelation 

function, r(0), …, r(p), are known/have been estimated.

 The eigenvector corresponding to the smallest 

eigenvalue of R(p+1)×(p+1) is the sole component of the 

noise subspace.

 The equivalent frequency estimation function is:
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We can estimate the sinusoidal 

frequencies by finding the p−1 zeros 

on unit circle:
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Interpretation of Pisarenko Method

    Tpvvv ,...,0  where, min 



ki fv  at  )(eigvector  sig of DTFT

Once the frequencies of the complex exponentials are 

determined, the amplitudes can be found from the 

eigenvalues of Rx:

),...,2,1(    pivvR iiix  

ii

H

iiix

H

i vvvRv   
1i

H

i vv

 s.t.   normalize iv

piveP wi

p

k

i

H

kk ,...,1    ,2

2

1






 Solve p equations for { Pk }
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Estimating the Amplitudes
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Limitations of Pisarenko Method

 Need to know or accurately estimate the # of sinusoids, p.

 Inaccurate estimation of autocorrelation values

=> Inaccurate eigen results of the (estimated) correlation matrix.

=> p zeros on unit circle in frequency estimation function may not 

be on the right places.

 What if we use a larger M×M correlation matrix?

– More than one eigenvectors will form the noise subspace: Which of 

M−p eigenvectors shall we use to check orthogonality with e(f) ?

– For one particular eigenvector chosen, there are M−1 zeros: 

 p zeros correspond to the true frequency components, whereas

 M−1−p zeros lead to false peaks.
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MUltiple SIgnal Classification (MUSIC) Algorithm

 Basic idea of MUSIC algorithm

– Reduce spurious peaks of freq. estimation function by averaging over 

the results from M−p smallest eigenvalues of the correlation matrix 

=> i.e., to find those freq. that give signal vectors consistently 

orthogonal to all noise eigenvectors.
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MUSIC Algorithm

The frequency estimation function

where

Locate 

the peaks
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Example-1

( Fig.8.31 from M. Hayes Book; 
examples are for 6x6 correlation 
matrix estimated from 64-value 
observations )



Example-2
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( Fig.8.37 & Table 8.10 from M. Hayes Book;  
overlaying results of 10 realizations with 64 
observed signal points each. )


