ECE792-41 Part III

Part III Spectrum Estimation 3.3 Subspace Approaches to Frequency Estimation

Electrical & Computer Engineering North Carolina State University

Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland, College Park. Contact: chauwai.wong@ncsu.edu.

NCSU ECE792-41 Statistical Methods for Signal Analytics

Recall: Limitations of Periodogram and ARMA

<u>Motivation</u>

- Random process studied in the previous section:
 - w.s.s. process modeled as the output of a LTI filter driven by a white noise process ~ smooth p.s.d. over broad freq. range
 - Parametric spectral estimation: AR, MA, ARMA
- Another important class of random processes: A sum of several complex exponentials in white noise

$$x[n] = \sum_{i=1}^{p} A_{i} \exp[j(2\pi f_{i}n + \phi_{i})] + w[n]$$

- The amplitudes and *p* different frequencies of the complex exponentials are constant but unknown
 - Frequencies contain desired info: velocity (sonar), formants (speech) ...
- Estimate the frequencies taking into account of the properties of such process

The Signal Model
$$x[n] = \sum_{i=1}^{p} A_i e^{j\phi_i} e^{j2\pi f_i n} + w[n]$$
 $n = 0, 1, \dots, N-1$ (observe N samples) $w[n]$ white noise, zero mean, variance σ_w^2 A_i, f_i real, constant, unknown \rightarrow to be estimated ϕ_i uniform distribution over $[0, 2\pi)$; uncorrelated with $w[n]$ and between different i

Recall: Single Complex Exponential Case

$$\begin{aligned} x[n] &= A \exp \left[j \left[2\pi f_0 n + \varphi \right] \right] &= 0 \\ E[x[n]] &= 0 \\ \# n \\ E[x[n] x[n-K]] &= 0 \\ E[x[n] x[n-K]] &= \frac{1}{2} \\ = E[A \exp \left[j (2\pi f_0 n + \varphi) \right] \cdot A \exp \left[j (2\pi f_0 n - 2\pi f_0 K + \varphi) \right] \right] \\ &= A^{T} \cdot \exp \left[j (2\pi f_0 K \right] \right] \\ \vdots & x[n] is zero-mean [n:s.s. [nith $f_x(K) = A^{2} \exp \left(j (2\pi f_0 K \right) \right] \\ \vdots & x[n] is zero-mean [n:s.s. [nith $f_x(K) = A^{2} \exp \left(j (2\pi f_0 K \right) \right] \\ f_x(K) &= E[y[n] + w[n] \\ = Mittemoide : E[w[n] w[n-K]] = \begin{cases} \sigma^{2} & K = 0 \\ 0 & 0 & 0 \end{cases} \\ f_y(K) &= E[y[n] y^{*}[n-K]] = E[(x[n] + w[n])(x^{*}[n-K] + w[n+K])] \\ &= f_x[K] + f_w[K] \\ = A^{2} \exp \left[j (2\pi f_0 K \right] + \sigma^{2} S[K] \end{aligned}$

$$\begin{aligned} E[x() w()] &= E[x()] E[w()] = 0 \end{aligned}$$$$$

E[X() W()] = E[X()] E[W()] = 0
this crosscorr term vanish
because of uncorrelated *and*
zero mean for either x() or w().

Deriving Autocorrelation Function

$$x[n] = \sum_{i=1}^{p} A_{i} e^{j\phi_{i}} e^{j2\pi f_{i}n} + w[n] = \sum_{i=1}^{p} s_{i}[n] + w[n]$$
$$r_{x}(k) = E\left[x[n]x^{*}[n-k]\right] = E\left[\left[\sum_{l=1}^{p} s_{l}[n] + w[n]\right] \cdot \left[\sum_{m=1}^{p} s_{m}^{*}[n-k] + w^{*}[n-k]\right]\right]$$

•
$$E[s_{l}[n]s_{m}^{*}[n-k]] = \begin{cases} E[s_{l}[n]]E[s_{m}[n-k]]^{*} = 0 & (\text{for } l \neq m) \\ r_{s_{m}}(k) = A_{m}^{2}e^{j2\pi f_{m}k} & (\text{for } l = m) \end{cases}$$

•
$$E[s_l[n]w^*[n-k]] = E[s_l[n]]E[w[n-k]]^* = 0$$

•
$$E[w[n]w^*[n-k]] = \sigma_w^2 \cdot \delta[k]$$

$$=>r_{x}(k)=E[x[n]x^{*}[n-k]]=\sum_{i=1}^{p}A_{i}^{2}e^{j2\pi f_{i}k}+\sigma_{w}^{2}\delta(k)$$

cy estimation [6]

Deriving Correlation Matrix

- May bring $r_x(k)$ into the correlation matrix
- Or from the expectation of vector's outer product and use the correlation analysis from last page

$$\underline{x}[n] = \sum_{i=1}^{p} \underline{s}_{i}[n] + \underline{w}[n]$$
$$R_{x} = E\left[\underline{x}[n]\underline{x}^{H}[n]\right] = E\left[\left[\sum_{l=1}^{p} \underline{s}_{l}[n] + \underline{w}[n]\right] \cdot \left[\sum_{m=1}^{p} \underline{s}_{m}^{H}[n] + \underline{w}^{H}[n]\right]\right]$$

$$\Longrightarrow R_x = \sum_{i=1}^p P_i \underline{e}_i \underline{e}_i^H + \sigma_w^2 I$$

Summary: Correlation Matrix for the Process

$$r_{x}(k) = E[x[n]x^{*}[n-k]] = \sum_{i=1}^{p} A_{i}^{2} e^{j2\pi f_{i}k} + \sigma_{w}^{2} \delta(k)$$
$$\triangleq \mathsf{Pi}$$

An MxM correlation matrix for {x[n]} (M>p):

$$R_{X} = R_{S} + R_{W}$$

$$R_{W} = \sigma_{W}^{T} I \xrightarrow{\rightarrow} \text{full rank}$$

$$R_{S} = \sum_{i=1}^{P} P_{i} e_{i} e_{i}^{\text{t}}$$
where $e_{i} = [1, e^{j2\pi f_{i}}, e^{j4\pi f_{i}}, \dots e^{j2\pi f_{i}(M+i)}]^{T}$

Correlation Matrix for the Process (cont'd)

$$R_{s} = \sum_{i=1}^{P} P_{i} \underline{e}_{i} \underline{e}_{i}^{H}$$

$$= \left[\underbrace{e_{i}, \underbrace{e_{i}}, \ldots, e_{p}}_{\stackrel{\text{\tiny }}{=} \underbrace{S}_{\text{\tiny }} \underbrace{p_{i}}_{\stackrel{\text{\tiny }}{=} \underbrace{P_{i}} \underbrace{P_{i}}_{\stackrel{\text{\tiny }}{=} \underbrace{P_{i}}_{\stackrel{\text{\tiny }}{=} \underbrace{P_{i}}_{\stackrel$$

 $\underline{e}_{i} \underline{e}_{i}^{H}$ has rank 1 (all columns are related by a factor) The MxM matrix R_s has rank p, and has only *p* nonzero eigenvalues.

Review: Rank and Eigen Properties

• Multiplying a full rank matrix won't change the rank of a matrix

i.e. r(A) = r(PA) = r(AQ)

where A is mxn, P is mxm full rank, and Q is nxn full rank.

- The rank of A is equal to the rank of A A^H and $A^H A$.
- Elementary operations (which can be characterized as multiplying by a full rank matrix) doesn't change matrix rank:
 - including interchange 2 rows/cols; multiply a row/col by a nonzero factor; add a scaled version of one row/col to another.
- Correlation matrix Rx in our model has full rank.
- Non-zero eigenvectors corresponding to distinct eigenvalues are linearly independent
- det(A) = product of all eigenvalues; so a matrix is invertible iff all eigenvalues are nonzero.

(see Hayes Sec.2.3 review of linear algebra)

Eigenvalues/vectors for Hermitian Matrix

- Multiplying A with a full rank matrix won't change rank(A)
- Eigenvalue decomposition
 - For an nxn matrix A having a set of n linearly independent eigenvectors, we can put together its eigenvectors as V s.t.

 $A = V \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) V^{-1}$

- For any nxn Hermitian matrix
 - There exists a set of n orthonormal eigenvectors
 - Thus V is unitary for Hermitian matrix A, and

 $A = V \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) V^{H} = \lambda_1 \underline{v}_1 \underline{v}_1^{H} + \dots + \lambda_n \underline{v}_n \underline{v}_n^{H}$

(see Hayes Sec.2.3.9 review of linear algebra)

NCSU ECE792-41 Statistical Methods for Signal Analytics

$$A \underline{v}_{i} = \lambda_{i} \underline{v}_{i}$$

$$A[\underline{v}_{i}, \underline{v}_{2}, \ldots] \begin{bmatrix} \lambda_{i} \\ \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \nu_{1}, \cdots, \nu_{n} \end{bmatrix} \begin{bmatrix} \lambda_{i} \\ \vdots \\ \ddots \\ \nabla \end{bmatrix}$$

Eigen Analysis of the Correlation Matrix

Let \underline{v}_i be an eigenvector of R_x with the corresponding eigenvalue λ_i , i.e., $R_x \underline{v}_i = \lambda_i \underline{v}_i$

$$\therefore R_{x} \underline{V}i = R_{y}\underline{V}i + \sigma_{w}\underline{V}i = \lambda_{i}\underline{V}i$$

$$\therefore R_{y}\underline{V}i = (\lambda_{i} - \sigma_{w}\underline{V})\underline{V}i$$

i.e., \underline{v}_i is also an eigenvector for $R_s,$ and the corresponding eigenvalue is

$$\lambda_{i}^{(s)} = \lambda_{i} - \sigma_{w}^{2}$$

$$\lambda_{i}^{(s)} = \begin{cases} \lambda_{i}^{(s)} + \sigma_{w}^{2} > \sigma_{w}^{2}, \quad i = 1, 2, \dots P \\ \sigma_{w}^{2} > \sigma_{w}^{2}, \quad i = P+1, \dots M \end{cases} \xrightarrow{\mathsf{R}_{s} \text{ has } p \\ \text{nonzero} \\ \text{eigenvalues}^{*} \end{cases}$$

Signal Subspace and Noise Subspace

For
$$i = P+1$$
, ..., $M = R_{S} \times \mathcal{Y}_{i} = \mathcal{O} \times \mathcal{Y}_{i}$
Also, $R_{S} = SDS^{H}$;
 $SDS^{H}\mathcal{Y}_{i} = \mathcal{O}$ for $i = p+1, ..., M$
 $M \times p$, full rank=p

i.e., the p column vectors are linearly independent

$$\Rightarrow S^{H} \underline{\mathcal{V}}_{i} = 0$$

Since $S = [\underline{\mathcal{Q}}_{1}, \dots, \underline{\mathcal{Q}}_{p}] \Rightarrow \underline{e}_{l}^{H} \underline{\mathcal{V}}_{i} = 0, \qquad l = 1, 2, \dots, p$
$$\underbrace{spanse_{1}, \dots, \underline{\mathcal{Q}}_{p}}_{SIGNAL SUBSPACE} \rightarrow \underbrace{p_{l}}_{SIGNAL SUBSPACE} \rightarrow \underbrace{p_{l}}_{NOISE SUBSPACE} \rightarrow \underbrace{p_{l}}_{eigenvalue} = \sigma_{e}^{2}$$

Frequency estimation [13]

NCSU ECE792-41 Statistical Methods for Signal Analytics

Relations Between Signal and Noise Subspaces

Since R_x and R_s are Hermitian matrices,

the eigenvectors are orthogonal to each other:

$$\begin{array}{c} \underline{\mathcal{V}}_{i} \perp \underline{\mathcal{V}}_{j} \quad \forall i \neq j \\ \Rightarrow \quad \text{Spans} \underbrace{\mathcal{V}}_{i}, \dots, \underbrace{\mathcal{V}}_{p} \neq \perp \text{Spans} \underbrace{\mathcal{V}}_{p+1}, \dots, \underbrace{\mathcal{V}}_{M} \end{cases} \\ \text{Recall Spans} \underbrace{\text{Spans}}_{e_{1}} \underbrace{\mathcal{V}}_{i}, \dots, \underbrace{\mathbb{P}}_{p} \neq \perp \underbrace{\text{Spans}}_{e_{1}} \underbrace{\mathcal{V}}_{p+1}, \dots, \underbrace{\mathbb{V}}_{M} \end{cases} , \\ \text{So it follows that} \\ \text{Spans} \underbrace{\mathbb{P}}_{e_{1}}, \dots, \underbrace{\mathbb{P}}_{p} \neq \vdots \\ \underbrace{\text{Spans}}_{u_{1}} \underbrace{\mathbb{P}}_{v_{1}}, \dots, \underbrace{\mathbb{P}}_{p} \end{pmatrix} \\ \underbrace{\mathbb{P}}_{e_{1}} \underbrace{\mathbb{P}}_{e_{1}} \underbrace{\text{Signal}}_{e_{2}} \underbrace{\mathbb{P}}_{v_{1}} \underbrace{\mathbb{P}}_{v_{1}} \underbrace{\mathbb{P}}_{v_{2}} \\ \underbrace{\mathbb{P}}_{e_{1}} \underbrace{\mathbb{P}}_{v_{1}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \\ \underbrace{\mathbb{P}}_{v_{1}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \\ \underbrace{\mathbb{P}}_{v_{1}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \\ \underbrace{\mathbb{P}}_{v_{1}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \\ \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \\ \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_{2}} \\ \underbrace{\mathbb{P}}_{v_{2}} \underbrace{\mathbb{P}}_{v_$$

Discussion: Complex Exponential Vectors

$$\underline{e}(f) = \begin{bmatrix} 1, e^{-j2\pi f}, e^{-j4\pi f}, \dots, e^{-j2\pi(M-1)f} \end{bmatrix}^{T}$$

$$\underline{e}^{H}(f_{1}) \cdot \underline{e}(f_{2}) = \sum_{k=0}^{M-1} e^{j2\pi(f_{1}-f_{2})k} = \frac{1-e^{j2\pi(f_{1}-f_{2})M}}{1-e^{j2\pi(f_{1}-f_{2})}} \text{ if } f_{1} \neq f_{2}$$
If $f_{1} - f_{2} = \mathscr{G}_{M}$ for some integer $a \Rightarrow \underline{e}^{H}(f_{1}) \cdot \underline{e}(f_{2}) = 0$

$$\text{Span} \{\underline{e}_{1}, \dots, \underline{e}_{P}\} = \text{Span} \{\underline{v}_{1}, \dots, \underline{v}_{P}\} = \text{Span} \{\underline{v}_{1}, \dots, \underline{v}_{P}\} = \text{Span} \{\underline{v}_{1}, \dots, \underline{v}_{P}\} = \text{Span} \{\underline{v}_{1}, \dots, \underline{v}_{P}\}$$

Frequency Estimation Function: General Form

Recall
$$\underline{e}_{l}^{H} \underline{v}_{i} = 0$$
 for $l=1, \dots p; i = p+1, \dots M$

Knowing eigenvectors of correlation matrix R_x , we can use these orthogonal conditions to find the frequencies $\{f_l\}$:

$$\underline{e}^{H}(f)\underline{v}_{i}=0?$$

We form a frequency estimation function

$$\hat{P}(f) = \frac{1}{\sum_{i=p+1}^{M} \alpha_i \left| \underline{e}(f)^H \underline{v}_i \right|^2}$$
$$\Rightarrow \hat{P}(f) \text{ is LARGE at } f_1, \dots, f_p$$

Here α_i are properly chosen constants (weights) for producing weighted average for projection power with all noise eigenvectors

Pisarenko Method for Frequency Estimation (1973)

- Assumes the number of complex exponentials, *p*, is known, and the first *p*+1 lags of the autocorrelation function, *r*(0), ..., *r*(*p*), are known/have been estimated.
- The eigenvector corresponding to the smallest eigenvalue of $\mathbf{R}_{(p+1)\times(p+1)}$ is the sole component of the noise subspace.
- The equivalent frequency estimation function is:

$$\hat{P}(f) = \frac{1}{\left|\underline{e}(f)^{H} \underline{v}_{\min}\right|^{2}}$$

Interpretation of Pisarenko Method

Since
$$\underline{e}^{H}(f)\underline{v}_{\min} = 0$$
, where $\underline{v}_{\min} = [v(0), \dots, v(p)]^{T}$

$$\Rightarrow \sum_{k=0}^{p} v_{\min}(k)e^{j2\pi fk} = 0$$
i.e. DTET($v_{k}(y)$) = 0

i.e., DTFT{
$$v_i(\cdot)$$
} $_{f=-f_l} = 0$

We can estimate the sinusoidal frequencies by finding the p-1 zeros on unit circle:

$$Z[v_i(\cdot)] = \sum_{k=0}^{p} v_i(k) \ z^{-k} = 0$$

the angle of zeros reflects the freq.

Estimating the Amplitudes

Once the frequencies of the complex exponentials are determined, the amplitudes can be found from the eigenvalues of R_x :

$$R_{x}\underline{v}_{i} = \lambda_{i}\underline{v}_{i} \quad (i = 1, 2, ..., p) \qquad \text{normalize} \quad \underline{v}_{i} \text{ s.t.}$$

$$\Rightarrow \underline{v}_{i}^{H}R_{x}\underline{v}_{i} = \lambda_{i}\underline{v}_{i}^{H}\underline{v}_{i} = \lambda_{i} \qquad \underline{v}_{i}^{H}\underline{v}_{i} = 1$$
Recall $R_{x} = \sum_{k=1}^{p} P_{k}\underline{e}_{k}\underline{e}_{k}^{H} + \sigma_{w}^{2}I$

$$\Rightarrow \sum_{k=1}^{p} P_{k} \left| \underline{e}_{k}^{H}\underline{v}_{i} \right|^{2} = \lambda_{i} - \sigma_{w}^{2}, \quad i = 1, ..., p$$
DTFT of sig eigvector $v_{i}(\cdot)$ at $-f_{k}$ \Rightarrow Solve p equations for $\{P_{k}\}$

Limitations of Pisarenko Method

- Need to know or accurately estimate the # of sinusoids, p.
- Inaccurate estimation of autocorrelation values
 - => Inaccurate eigen results of the (estimated) correlation matrix.
 - => *p* zeros on unit circle in frequency estimation function may not be on the right places.
- What if we use a larger M×M correlation matrix?
 - More than one eigenvectors will form the noise subspace: Which of M-p eigenvectors shall we use to check orthogonality with $\underline{e}(f)$?
 - For one particular eigenvector chosen, there are M-1 zeros:
 - *p* zeros correspond to the true frequency components, whereas
 - M-1-p zeros lead to false peaks.

MUItiple Signal Classification (MUSIC) Algorithm

- Basic idea of MUSIC algorithm
 - Reduce spurious peaks of freq. estimation function by averaging over the results from M-p smallest eigenvalues of the correlation matrix
 - => i.e., to find those freq. that give signal vectors **consistently orthogonal** to all noise eigenvectors.

MUSIC Algorithm

The frequency estimation function

(Fig.8.31 from M. Hayes Book; examples are for 6x6 correlation matrix estimated from 64-value observations)

NCSU ECE792-41 Statistical Method

Figure 8.31 Frequency estimation functions of a single complex exponential in white noise. (a) The frequency estimation function that uses all of the noise eigenvectors with a weighting $\alpha_i = 1$. (b) An overlay plot of the frequency estimation functions $V_i(e^{j\omega}) = 1/|\mathbf{e}^H \mathbf{v}_i|^2$ that are derived from each noise eigenvector.

(Fig.8.37 & Table 8.10 from M. Hayes Book; overlaying results of 10 realizations with 64 observed signal points each.)

NCSU ECE792-41 Statistical Methods for Signal Analytics