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Review of Last Section: FIR Wiener Filtering
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Two perspectives leading to the optimal filter's condition (NE):
@ write J(a) to have a perfect square
Q 8%‘;; = 0 = principle of orthogonality E [e[n]x*[n — k]] = 0,
k=0,..M—1.
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Recap: Principle of Orthogonality

E [e[n]x*[n — Kk]] = 0 for k =0,...M — 1.

= E [d[n]x*[n — K]] = S0 5" ac - E [x[n — £)x*[n — K]]

= rae(k) = )00t aerx(k — €) = Normal Equation p* = RTa
Jmin = Var(d[n]) — Var(d[n])

where Var(d[n]) = E [d[n]d"[n]] = E [a"x[n]x"[]a"] = a"Rea"
bring in N.E. for a = Var(d[n]) = a”p = p"R~1p

May also use the vector form to derive N.E.: set gradient \/,«J =0
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Forward Linear Prediction

Recall last section: FIR Wiener filter W(z) = Z/ﬁ/’;ol azk

Let ¢, = a), (i.e., c represents the filter coefficients and helps us to
avoid many conjugates in the normal equation)

Given u[n — 1], u[n —2],..., u[n — M], we are interested in
estimating u[n] with a linear predictor:

WCn = M;—U ucn-ﬂ o E&z—;
R —
ué——% [ — qé’—%q

T

Snx]

This structure is called “tapped delay line”: individual outputs of each delay

are tapped out and diverted into the multipliers of the filter/predictor.
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Forward Linear Prediction
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0[n[Sn-1] = SkLy cpuln — K] = culn — 1]

Sp—1 denotes the M-dimensional space spanned by the samples
uln—1],...,uln— M], and

a u[n —1]

o uln — 2] u[n — 1] is vector form for
c= o | uln—1]= : tap inputs and is x[n] from

m u[n — M] General Wiener
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Forward Prediction Error

@ The forward prediction error
fm[n] = u[n] — d[n|Sp-1]

e[n] d[n] < From general Wiener filter notation

@ The minimum mean-squared prediction error

Py = E [|fm[n]]?]

Readings for LP: Haykin 4th Ed. 3.1-3.3
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Optimal Weight Vector

To obtain optimal weight vector ¢, apply Wiener filtering theory:

@ Obtain the correlation matrix:

ufn]
R=E [u[n— 1]u"[n —1]] where ulr] = uln—1]

= E [u[n]u"[n]] (by stationarity) :
uln—M+1]

@ Obtain the “cross correlation” vector between the tap inputs
and the desired output d[n] = u[n]:

E [uln — 1u*[n]] =
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Optimal Weight Vector

© Thus the Normal Equation for FLP is
Rc=r

The prediction error is

Py = r(0) — rflc
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Relation: N.E. for FLP vs. Yule-Walker eq. for AR
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e Normal Equation for FLP: Rc = r
e Yule-Walker Eq. for AR proc: r[k] = — > )_, alf]rfk — €] for k >1
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= N.E. is in the same form as the Yule-Walker equation for AR
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If the forward linear prediction is applied to an AR process of
known model order M and optimized in MSE sense, its tap weights
in theory take on the same values as the corresponding parameter
of the AR process.

@ Not surprising: the equation defining the forward prediction and the
difference equation defining the AR process have the same
mathematical form.

@ When u[n] process is not AR, the predictor provides only an

approximation of the process.

= This provide a way to test if u[n] is an AR process (through
examining the whiteness of prediction error e[n]); and if so,
determine its order and AR parameters.

Question: Optimal predictor for {u[n]}=AR(p) when p < M?
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Forward-Prediction-Error Filter

fualn] = uln] — cHuln — 1]
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Augmented Normal Equation for FLP

From the above results:
Rc=r Normal Equation or Wiener-Hopf Equation

Pm = r(0) — rfc prediction error

Put together:

r(0) rH 1] [ Pu
r Ry -c|] [ O
| S —
Ry41
Augmented N.E. for FLP

P
RM+13M:|: (;VI]
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Summary of Forward Linear Prediction

General Wiener Forward LP  Backward LP

Tap input
Desired response
(conj) Weight vector
Estimated sig
Estimation error
Correlation matrix
Cross-corr vector
MMSE
Normal Equation
Augmented N.E.
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Backward Linear Prediction
Given u[n], u[n —1],...,u[n — M + 1], we are interested in
estimating u[n — M.

Backward prediction error by[n] = u[n — M] — i [n— M|S,]
e Sp: span {u[n],uln—1],...,u[n— M+ 1]}
Minimize mean-square prediction error Py gLp = E [|bM[n]|2}
U»UL] ULLV\-[] [n 2] ULn-M]
. T

U rm Sn—( ]
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Backward Linear Prediction

Let g denote the optimal weight vector (conjugate) of the BLP:
e, dln— M =SV giuln+1— k.

To solve for g, we need

@ Correlation matrix R = E [u[n]u"[n]]
@ Crosscorrelation vector
r(M)
r(M—1
Bl M= | D e

r(1)
Normal Equation for BLP

RgzﬁB*

The BLP prediction error: Py gp = r(0) — (rf)7g

ECE792-41 Lecture Part | 15/31



n - 3.1 Forward Linear Prediction
3 Linear Prediction A P
Appendix: Detailed Derivations 3.2 Backward Linear Prediction
PP : 3.3 Whitening Property of Linear Prediction

Relations between FLP and BLP

Recall the NE for FLP: Rc = r
Rearrange the NE for BLP backward: = R g8 = r*

Q= (PO T8 [¥e
AN S~ \ - :
IO L L J7

Conjugate = RHgB* =r= REB* =r
.. optimal predictors of FLP: ¢ = 55*, or equivalently g = B

By reversing the order & complex conjugating c, we obtain g.
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Pusie = r(0) - (2)g = r(0) ~ (5)7c = r(0) ~ [ce]
——

real, scalar
H
=r(0)—r"c= PmrLp

This relation is not surprising:
the process is w.s.s. (s.t. r(k) = r*(—k)), and the optimal
prediction error depends only on the process’ statistical property.
% Recall from Wiener filtering: Jmin = 03 — pHR_lg

(FLP) r"R™1r

(BLP) LB*HRfllB* — (LHRT*_IL)B* — LHRflf
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Backward-Prediction-Error Filter
buln] = uln — M] = 3751, giuln +1— 4]
Using the a;; notation defined earlier and gy = _a’l‘w,M+1—k:

buln] = Y 4lo am m—kuln — ]

am.,o

- =M

_ BT [ u[nU[—n]M]

} where a, =

am,m

WVT WEr-1TJ
\\\\\\ \Jgﬁ_%k_} bulnd
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Augmented Normal Equation for BLP

Rg =B’
Bring together £=1 BT
Pum=r(0)—(r") g

Ry41

Augmented N.E. for BLP

. 0
RM+1§/l\3/; = [ Py ]
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Summary of Backward Linear Prediction

General Wiener Forward LP  Backward LP

Tap input
Desired response
(conj) Weight vector
Estimated sig
Estimation error
Correlation matrix
Cross-corr vector
MMSE
Normal Equation
Augmented N.E.
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Whitening Property of Linear Prediction

(Ref: Haykin 4th Ed. §3.4 (5) Property)

Conceptually: The best predictor tries to explore the predictable
traces from a set of (past) given values onto the future value,
leaving only the unforeseeable parts as the prediction error.

Also recall the principle of orthogonality: the prediction error is
statistically uncorrelated with the samples used in the prediction.

As we increase the order of the prediction-error filter,
the correlation between its adjacent outputs is reduced.
If the order is high enough, the output errors become
approximately a white process (i.e., be “whitened").
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Analysis and Synthesis

From forward prediction results on the {u[n]} process:

uln] + ajyy quln — 1] + ... + ajy yuln — M] = fy[n]  Analysis
a[n] = —aj, yuln — 1] — ... — ay; puln — M] + v[n]  Synthesis

Here v[n] may be quantized version of fy[n], or regenerated from white noise

If {u[n]} sequence has high correlation between adjacent samples,
then fy[n] will have a much smaller dynamic range than u[n].
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Compression tool #3: Predictive Coding

Recall two compression tools from Part-1:
(1) lossless: decimate a bandlimited signal; (2) lossy: quantization.

Tool #3: Linear Prediction. we can first figure out the best
predictor for a chunk of approximately stationary samples,
encode the first sample, then do prediction and encode the
prediction residues (as well as the prediction parameters).

The structures of analysis and synthesis of linear prediction form a
matched pair.

This is the basic principle behind Linear Prediction Coding (LPC)
for transmission and reconstruction of digital speech signals.
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Linear Prediction: Analysis

uln] + 37/1,1”[” —1]+...+ aTW,M”[” — M] = fu[n]

IMH] um—ﬂ Wn-M)
5 T &ll
&JFM: o=t S TMU\]

If {fm[n]} is white (i.e., the correlation among {u[n], u[n —1],...}
values have been completely explored), then the process {u[n]} can
be statistically characterized by a,, vector, plus the mean and
variance of fyy[n].
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Linear Prediction: Synthesis

a[n] = —ap, quln — 1] — ... — ap yuln — M] + v[n]
vin] 5 weng
i
<=—(u . . .
% If {v[n]} is a white noise process,
: ) the synthesis output {u[n]} using
' { linear prediction is an AR process

1 E ith t
@e—@ with parameters {apm « }-
Lo

S —
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LPC Encoding of Speech Signals

@ Partition speech signal into frames s.t. within a frame it is
approximately stationary

@ Analyze a frame to obtain a compact representation of the
linear prediction parameters, and some parameters
characterizing the prediction residue fy[n]

(if more b.w. is available and higher quality is desirable, we may
also include some coarse representation of fy;[n] by quantization)

@ This gives much more compact representation than simple
digitization (PCM coding): e.g., 64kbps — 2.4k-4.8kbps

@ A decoder uses the synthesis structure to reconstruct the
speech signal, with a suitable driving sequence
(periodic impulse train for voiced sound & white noise for fricative
sound; or quantized fy[n] if b.w. allowed)
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