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Complexity in Solving Linear Prediction

(Refs: Hayes §5.2; Haykin 4th Ed. §3.3)

Recall Augmented Normal Equation for linear prediction:

FLP RM+1aM =

[
PM

0

]
BLP RM+1a

B∗
M =

[
0
PM

]
As RM+1 is usually non-singular, aM may be obtained by inverting
RM+1, or Gaussian elimination for solving equation array:

⇒ Computational complexity O(M3).
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Exploiting Structures in Matrix and LP Problem

Complexity in solving a general linear equation array:

Method-1: invert the matrix, e.g. compute determinant of RM+1

matrix and the adjacency matrices

⇒ matrix inversion has O(M3) complexity

Method-2: use Gaussian elimination

⇒ approximately M3/3 multiplication and division

By exploring the Toeplitz structure of the matrix, Levinson-Durbin
recursion can reduce complexity to O(M2)

M steps of order recursion, each step has a linear complexity w.r.t.
intermediate order

Memory use: Gaussian elimination O(M2) for the matrix, vs.
Levinson-Durbin O(M) for the autocorrelation vector and model
parameter vector.
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Levinson-Durbin Recursion

The Levinson-Durbin recursion is an order-recursion to efficiently
solve linear systems with Toeplitz matrices, e.g., Augmented N.E.

M steps of order recursion, each step has a linear complexity
w.r.t. intermediate order

The recursion can be stated in two ways for the linear prediction
problem:

1 Forward prediction point of view

2 Backward prediction point of view
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Two Points of View of LD Recursion

Denote am ∈ C(m+1)×1 as the tap weight vector of a forward-prediction-error
filter of order m = 0, ...,M.

am−1,0 = 1, am−1,m , 0, am,m = Γm (a constant “reflection coefficient”)

Forward prediction point of view

am,k = am−1,k + Γm a∗m−1,m−k , k = 0, 1, . . . ,m

In vector form: am =

[
am−1

0

]
+ Γm

[
0

aB
∗

m−1

]
(∗∗)

Backward prediction point of view

a∗m,m−k = a∗m−1,m−k + Γ∗m am−1,k , k = 0, 1, . . . ,m

In vector form: aB
∗

m =

[
0

aB
∗

m−1

]
+ Γ∗m

[
am−1

0

]
(can be obtained by

reordering and conjugating (∗∗))
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Recall: Forward and Backward Prediction Errors

• fm[n] = u[n]− û[n] = aHm u[n]︸︷︷︸
(m+1)×1

• bm[n] = u[n −m]− û[n −m] = aB,T
m u[n]

ECE792-41 Lecture Part I 6 / 20



4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(3) Verify the Update Equations of the LD Recursion

Left multiply both sides of (∗∗) by Rm+1:

LHS: Rm+1am =

[
Pm

0m

]
(by augmented N.E.)

RHS (1): Rm+1

[
am−1

0

]
=

[
Rm rB

∗

m

rBTm r(0)

] [
am−1

0

]
=

[
Rmam−1

rBTm am−1

]
=

 Pm−1

0m−1

∆m−1

 where ∆m−1 , rBTm am−1

RHS (2): Rm+1

[
0

aB∗
m−1

]
=

[
r(0) rH

r Rm

] [
0

aB∗
m−1

]
=

[
rHaB∗

m−1

Rma
B∗
m−1

]
=

 ∆∗
m−1

0m−1

Pm−1


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Computing Γm

Put together LHS and RHS: for the order update recursion (∗∗) to
hold, we should have[
Pm

0m

]
=

 Pm−1

0m−1

∆m−1

+ Γm

 ∆∗m−1

0m−1

Pm−1


⇒

{
Pm = Pm−1 + Γm∆∗m−1

0 = ∆m−1 + ΓmPm−1

⇒

am,m = Γm = −∆m−1

Pm−1

Pm = Pm−1

(
1− |Γm|2

)
Caution: Do not confuse the power term Pm and the ratio term Γm.
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(4) Reflection Coefficients Γm

To ensure the prediction MSE Pm ≥ 0 and Pm non-increasing as
we increase the order of the predictor (i.e., 0 ≤ Pm ≤ Pm−1), we
require |Γm|2 ≤ 1, ∀m > 0.

Let P0 = r(0) as the initial estimation error has power equal to the
signal power (i.e., no regression is applied), we have

PM = P0 ·
∏M

m=1(1− |Γm|2)

Question: Under what situation Γm = 0?
i.e., increasing order won’t reduce error.

Consider a process with Markovian-like property in 2nd order statistic

sense (e.g. AR process) s.t. info of further past is contained in k recent

samples
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(5) About ∆m

One can show that the cross-correlation of BLP error and
FLP error E

[
bm−1[n − 1]f ∗m−1[n]

]
is equal to ∆m−1.

(Derive from the definition ∆m−1 , rBTm am−1, and use definitions of

bm−1[n − 1], f ∗m−1[n] and orthogonality principle.)

Thus the reflection coefficient can be written as

Γm = −∆m−1

Pm−1
= −

E
[
bm−1[n − 1]f ∗m−1[n]

]
E [|fm−1[n]|2]

which is also the negative partial correlation coefficient.

Note: for the 0th order predictor, use the mean value, i.e., zero, as the
estimate, s.t. f0[n] = u[n] = b0[n],

∴ ∆0 = E [b0[n − 1]f ∗0 [n]] = E [u[n − 1]u∗[n]] = r(−1) = r∗(1)
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Preview: Relations of w.s.s and LP Parameters

For any w.s.s. process {u[n]}:
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(6) Computing aM and PM by Forward Recursion

Case-1 : If we know the autocorrelation function r(·):

• # of iterations =
∑M

m=1 m = M(M+1)
2 , comp. complexity is O(M2)

• r(k) may be estimated from time average of one realization of {u[n]}:
r̂(k) = 1

N−k

∑N
n=k+1 u[n]u∗[n − k], k = 0, 1, . . . ,M

(recall correlation ergodicity)
ECE792-41 Lecture Part I 12 / 20



4 Levinson-Durbin Recursion
Appendix: More Details

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γm ; (5) ∆m
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(6) Computing aM and PM by Forward Recursion

Case-2 : If we know Γ1, Γ2, . . . , ΓM and P0 = r(0),
we can carry out the recursion for m = 1, 2, . . . ,M:{
am,k = am−1,k + Γma

∗
m−1,m−k , k = 1, . . . ,m

Pm = Pm−1

(
1− |Γm|2

)
Note: am,m = am−1,m + Γma

∗
m−1,0 = 0 + Γm · 1 = Γm
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(7) Inverse Form of Levinson-Durbin Recursion

Given the tap-weights aM , find the reflection coefficients Γ1, Γ2, . . . , ΓM :

Recall:

{
(FP) am,k = am−1,k + Γm a∗m−1,m−k , k = 0, . . . ,m

(BP) a∗m,m−k = a∗m−1,m−k + Γ∗
m am−1,k , am,m = Γm

Multiply (BP) by Γm and subtract from (FP):

am−1,k =
am,k−Γma∗m,m−k

1−|Γm|2 =
am,k−am,ma∗m,m−k

1−|am,m|2 , k = 0, . . . ,m − 1

⇒ Γm = am,m, Γm−1 = am−1,m−1, . . .,

iterate with m = M − 1,M − 2, . . .

i.e., From aM ⇒ am ⇒ Γm

to lower order

see §5 Lattice structure:
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(8) Autocorrelation Function & Reflection Coefficients

Recall: The 2nd-order statistics of a stationary time series can be
represented in terms of autocorrelation function r(k), or
equivalently the power spectral density by taking DTFT.

Another way is to use {r(0), Γ1, Γ2, . . . , ΓM}.

To find the relation between them, recall:

∆m−1 , rBTm am−1 =
∑M−1

k=0 am−1,k r(−m + k) and Γm = −∆m−1

Pm−1

⇒ −ΓmPm−1 =
∑m−1

k=0 am−1,k r(k −m), where am−1,0 = 1.
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(8) Autocorrelation Function & Reflection Coefficients

1 r(m) = r∗(−m) = −Γ∗mPm−1 −
∑m−1

k=1 a∗m−1,k r(m − k)

Given r(0), Γ1, Γ2, . . . , ΓM , can get am using Levinson-Durbin
recursion s.t. r(1), . . . , r(M) can be generated recursively.

2 Recall if r(0), . . . , r(M) are given, we can get am.
So Γ1, . . . , ΓM can be obtained recursively: Γm = am,m

3 These facts imply that the reflection coefficients {Γk} can
uniquely represent the 2nd-order statistics of a w.s.s. process.
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Summary

Statistical representation of w.s.s. process
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Proof for ∆m−1 Property
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