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Complexity in Solving Linear Prediction

(Refs: Hayes §5.2; Haykin 4th Ed. §3.3)

Recall Augmented Normal Equation for linear prediction:

FLP Rpy1ay = [ F;M }

* 0
B* __ ~
BLP Ryiiay = [ Py }
As Rp+1 is usually non-singular, ap, may be obtained by inverting

Rp11, or Gaussian elimination for solving equation array:

= Computational complexity O(M?).
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Exploiting Structures in Matrix and LP Problem

Complexity in solving a general linear equation array:
@ Method-1: invert the matrix, e.g. compute determinant of Rp;41
matrix and the adjacency matrices
= matrix inversion has O(M3) complexity

@ Method-2: use Gaussian elimination
= approximately M3/3 multiplication and division

By exploring the Toeplitz structure of the matrix, Levinson-Durbin
recursion can reduce complexity to O(M?)

@ M steps of order recursion, each step has a linear complexity w.r.t.
intermediate order

@ Memory use: Gaussian elimination O(M?) for the matrix, vs.
Levinson-Durbin O(M) for the autocorrelation vector and model
parameter vector.

ECE792-41 Lecture Part | 3/20



(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients 'm; (5) Am
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

Levinson-Durbin Recursion

The Levinson-Durbin recursion is an order-recursion to efficiently
solve linear systems with Toeplitz matrices, e.g., Augmented N.E.

M steps of order recursion, each step has a linear complexity
w.r.t. intermediate order

The recursion can be stated in two ways for the linear prediction
problem:

© Forward prediction point of view

@ Backward prediction point of view
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Two Points of View of LD Recursion

Denote a,, € Cm+DX1 35 the tap weight vector of a forward-prediction-error
filter of order m =0, ..., M.

am-1,0 =1, am—1,m = 0, amm = I'm (a constant “reflection coefficient")

Forward prediction point of view

am,k = am—l,k + rm a*mfl,mfk' k == 07 1, ceey m

In vector form: a,, = [ am-1 ] + T [ Bq ] ()
0 m-1

Backward prediction point of view

* % * _
Imm—k — @m—1,m—k + I dm—1,k k=0,1,...,m

. 0 a
In vector form: é,’,sq = [ B* ] + 17, [ =m-1 } (can be obtained by
Am-1 0

reordering and conjugating (*x))
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Recall: Forward and Backward Prediction Errors

(FLP) (BLP)
Ugnl T T T
Wene1) Yj e T:) 210 fj e l] baTw)
W] I ] b3t
W Ch-3] | *
o 0 = Ktﬂ
o foli] = uln] — aln] = 2t} ulr]
—
(m+1)x1

o bm[n] = uln— m] — d[n — m] = a5 " u[n]
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(3) Verify the Update Equations of the LD Recursion

Left multiply both sides of (xx) by Ry11:

LHS: Rppi1a, = [ gm } (by augmented N.E.)

—m

-
RHS (1): Rps1 [ énbfl ] _ { FB"% o ] [aml }

r(0) 0
mel
_ |: RBrz;_ém 1 :| — Omfl where Am,1 éLEqTém—l
I'm 8m—1 AN

im0 £ )[.2]
B [ LHéﬁ*_l } AL,

| Rnalr
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Computing I,

Put together LHS and RHS: for the order update recursion (kx) to
hold, we should have

Pmn_1 *
Pm m m—1
|: 0 :| = mel + rm mel
-m Am—l Pm—l

Pm=Pm_1+TmA}_,

amm =Im=— P 1

Pm - mel (1 - ’rm‘2)

Caution: Do not confuse the power term P,, and the ratio term I,,.
ECE792-41 Lecture Part | 8/20



(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients ['y; (5) Ap
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

4 Levinson-Durbin Recursion
Appendix: More Details

(4) Reflection Coefficients I,

To ensure the prediction MSE Pp, > 0 and P, non-increasing as
we increase the order of the predictor (i.e., 0 < Py, < Ppy—1), we
require [[,[2 <1, Vm > 0.

Let Py = r(0) as the initial estimation error has power equal to the
signal power (i.e., no regression is applied), we have

Pu=Po - TIm_y(1— |Fmf?)

Question: Under what situation I',, = 07
i.e., increasing order won't reduce error.

Consider a process with Markovian-like property in 2nd order statistic
sense (e.g. AR process) s.t. info of further past is contained in k recent
samples
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(5) About A,

One can show that the cross-correlation of BLP error and
FLP error E [bpm—1[n — 1]f5_4[n]] is equal to Apm_;.
(Derive from the definition Apy,—1 £ LiTém,p and use definitions of

bm—_1[n — 1], fi_1[n] and orthogonality principle.)
Thus the reflection coefficient can be written as

ro_ _Ama _E [bm—1[n — 1] [n]]
" Pm-1 E[[fm—1[n] ]

which is also the negative partial correlation coefficient.

Note: for the Oth order predictor, use the mean value, i.e., zero, as the
estimate, s.t. fo[n] = u[n] = bo[n],

Do = E [bo[n — 1]f5"[n]] = E [u[n — 1]u*[n]] = r(=1) = r"(1)
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Preview: Relations of w.s.s and LP Parameters

For any w.s.s. process {u[n]}:

W) wQ2Y oo (W]
e A
\U/ QﬁT'tMKSL
Pt conrelodt¥on rj; haweallvatwes §§ ()
jﬂmw\m{lﬂ)( --—I‘(m‘f = Pp.s:ok.

(V (5.1
(é‘[) h\ )_/\y\wpred)c\’?tﬂ\'
besf lectivmn.

b5.2)
ettt T, Y = gam—}
L’H
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(6) Computing a,, and Py by Forward Recursion

Case-1 : If we know the autocorrelation function r(+):

O L.=rD , Po=reo)
2 j"f'“ M=1y ~-- M ( srder Peoursitn)

Pu= — ==
w= —

Pt N
['f”" e e U,U%e ?red)cjverwj‘n—Mer.m)

Ome= Oma, e+ [ aw\—x m—K

(wkere Owm-,0=1; (w-t,m=0)
Awn = Fm A
P PM—( (\ ijt\

e # of iterations = Zgzl m= M(A;’H), comp. complexity is O(M?)

e r(k) may be estimated from time average of one realization of {u[n]}:

. N «
P(k) = ﬁzn:kﬂu[n]u [n—k], k=0,1,....M
(recall correlation ergodicity)
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Case-2 : If we know 1, T'a, ..., Ty and Py = r(0),
we can carry out the recursion for m=1,2,... M:

Imk = Am-1,k + rma:ﬂ,_Lm_k. k=1,....,m

Pm = Pm-1 (]- - ’rm’2)

Note: amm = am—1,m + rma’,"n_l’o =04T,-1=I,
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(7) Inverse Form of Levinson-Durbin Recursion

Given the tap-weights a,,, find the reflection coefficients I'1, 2,

.,FM:
Recall: (FP) amx = am-1k +Tm G 1mk k=0,....m
BP) a; ok = ap1,mk T Tmam—16 amm="Tm
Multiply (BP) by I, and subtract from (FP):
e = A = I ek =0, m 1
=Tm=amm lm-1=am-1,m-1,--- i.e., From ay, = a,, = I,

iterate with m=M -1, M —2,... to lower order

see §5 Lattice structure:

N e iy Enes) R L DR e e
R LR,
« N ; : M !
W) [y g !
" 3 NP
5,0 |..E_ — = b v f.v:]@
o=

i batnd
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(8) Autocorrelation Function & Reflection Coefficients

Recall: The 2nd-order statistics of a stationary time series can be
represented in terms of autocorrelation function r(k), or
equivalently the power spectral density by taking DTFT.

Another way is to use {r(0),I1,l2,...,Tm}.

To find the relation between them, recall:

Apm12rBTa 1—Zk o am—1kr(— m+k)andrm:—%

= [ Pn_1= ZZ’;OI am—1,kr(k —m), where ap,_10=1.
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(8) Autocorrelation Function & Reflection Coefficients

Q r(m)=r*(-m)=—T}P — >k 11 afn—l,k’(m — k)
Given r(0),l1,T2,...,p, can get a,, using Levinson-Durbin
recursion s.t. r(1),...,r(M) can be generated recursively.

@ Recall if r(0),...,r(M) are given, we can get a,,
So I'1,...,m can be obtained recursively: Iy, = am m

© These facts imply that the reflection coefficients {I'x} can
uniquely represent the 2nd-order statistics of a w.s.s. process.
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Summary

Statistical representation of w.s.s. process

Ao covrelofion .j—me,albuaimj =)
j“"‘wmér@)p——r(m} b F s.0k

feflectm. // \\ P P%mm

toeff: {01, [LT > %e». ”f

(FLP) (BLP)
ugn T- T
o1 YJ j(r.n) jfmﬂ f;\ b.or) ] o
Wn2) L bstn]
WCh-3]

ECE792-41 Lecture Part | 17 /20






4 Levinson-Durbin Recursion
Appendix: More Details

Example of Forward Recursion Case-2

ed. (twed). Eiven P, Pa, T3 and Pl fhd- 0500 Ps i
o~ Predid?m—ij‘\—m—@wiu‘ 3.

® Po= r(ed>

O W=t: Qo=t: Q=] Gue=o0; P= pu(l’[P.ﬁ\

® Mo2. Gue=t; ba= Ot Pl =P P”
Raz= [, MM§L\§-;:W
Pa= P (I- (Rl e ey

O M=3:  Oao=t; Bai= oo+ s bon= MRS P 0
032= Rux+ (s Ufz,FPL* s P(++ P Pﬁkps
0\3.’: = P;
Ps= Pa(l- IR
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Proof for A,,_1 Property

Prefe I P;‘S“A‘ e A Y]
Apr = B By = [Fewd, TN ] 8 CDI;M:[ : ]

= E[WDMUNINMD] Buny e

ELung ublonn) Ba] O = E[uink] Wn)

= £ (WD (whina10b) ] = (E[umu’pen] )"
- _ Wgw1]
= £ 1w bua D\—\]]] ® Yulml= [M;“_NJ
= Bl bl et
W - W=t @ b [m4] = %OM%M_‘_KM(,M%'K.]
— = Bl Ul
SR g L
= wﬂ*%"l o:,,’:u‘.,L winK] .{ wwJ, - ucnmm}

Foykiwy 4% Ed. (Pis2)
Nz parﬁtll_ Comelatiorne (,PP(R,COK) (A@W bewuvj’.,,\LW] Md\rbw-\ [n-1]. P\e Q(\}k}\_
w2 ELbu I0F 0] JTRES a2 EL b= P
(Elbwn 0PI EL It 11)> 7 Punt " ¥ 1
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