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Introduction

Recall: a forward or backward prediction-error filter can each be
realized using a separate tapped-delay-line structure.

Lattice structure discussed in this section provides a powerful way
to combine the FLP and BLP operations into a single structure.
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Order Update for Prediction Errors

(Readings: Haykin §3.8)

Review:

UAM]

uln — m]

[%ﬂqﬂ]

@ signal vector u,, {[n] = [

@ Levinson-Durbin recursion:

a, = [ é”(’)—l ] +Tm [ an ] (forward)

m—1

ab’ = { BO* } + T3 [ am-1 } (backward)
dm-1 0
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Recursive Relations for f,,[n] and b,,[n]

fmln] = i1 [0]; bm[n] = 257 U1 (1]

O FLP: | . .
fm[n] = {éﬁq—lio] { u[77m_ m } +I {0 Ele} {um[n—l] }
fm[n] = fm—1[n] + T bm—1[n — 1]
Q@ BLP:

oot = (087 ] [, 173y 0 [t a00] [,

bm[n] = bm—1[n — 1] + [ mfm—1[n]
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Basic Lattice Structure

[ZZ[[Z]] ] = [ rlm rlm] [ bmml_[;[i]l]}’ m=1,2... .M

Signal Flow Graph (SFG)
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Modular Structure

Recall fy[n] = bo[n] = u[n], thus

T
n) _ b\m bM <

-— — o—

Dol

= = = = =

To increase the order, we simply add more stages and reuse the
earlier computations.

Using a tapped delay line implementation, we need M separate
filters to generate by[n], ba[n], ..., bm[n].

In contrast, a single lattice structure can generate byi[n], ..., bu[n]
as well as fi[n],..., fm[n] at the same time.
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Correlation Properties

Given from a zero-mean w.s.s.

: Predict
process:
(FLP) {u[n—1],...,uln— M]} = uln]
(BLP) {uln],uln—1],...,uln—M+1]} = uln — M]

1. Principle of Orthogonality
i.e., conceptually

E[fm[nu*[n—k]] =0 (1 < k < m) fm[n] L u,,[n—1]
E [bn[n]u*[n—k]]=0(0 < k< m-—1) bm[n] L u,,[n]
2. E[fn[n]u*[n]] = E [bm[n]u*[n — m]] = Pn,

Proof :
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Correlation Properties

3. Correlations of error signals across orders:

P, i=m
0 i< m ie,by[n L bin]

(BLP) E [bm[n] b} [n]] = {
(FLP) E [fm[n]f*[n]] = Pm for i < m
Proof : (can obtain the case i > m by conjugation)

Remark : The generation of {bg[n], b1[n],...,} is like a
Gram-Schmidt orthogonalization process on {u[n],u[n—1],...,}.

As a result, {bj[n]}i=01,.. is a new, uncorrelated representation of
{u[n]} containing exactly the same information.
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Correlation Properties

4. Correlations of error signals across orders and time:

E[fn[n]f*[n = 0] = E[fnln+ f*[n]] =0 (1 << m—i,i < m)

E [bm[n]bf[n — €] = E[bm[n+ {]bf[n]] =0 (0 <L <m—i—1,i <m)
Proof :

5. Correlations of error signals across orders and time:

P, i=m

E [fm[n+ m]f*[n+i]] = {0

/\\.
3

E[bm[n+ mlbi[n+i]] = Pm i< m

Proof :
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6. Cross-correlations of FLP and BLP error signals:

Pm i<m
0 i>m

E [fm[n] b7 [n]] = {

Proof : (Details)
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Joint Process Estimator: Motivation

(Readings: Haykin §3.10; Hayes §7.2.4, §9.2.8)
In (general) Wiener filtering theory, we use {x[n]} process to
estimate a desired response {d[n]}.

Solving the normal equation may require inverting the correlation
matrix Ry.

We now use the lattice structure to obtain a backward prediction
error process {bj[n]} as an equivalent, uncorrelated representation
of {u[n]} that contains exactly the same information.

We then apply an optimal filter on {b;[n]} to estimate {d[n]}.
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Joint Process Estimator: Structure

Fuin)
- S =
(YWY b

d [n[Sn] = k"' by 1[n], where k = [ko, ki, ..., km]"
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Joint Process Estimator: Result

To determine the optimal weight to minimize MSE of estimation:
@ Denote D as the (M + 1) x (M + 1) correlation matrix of b[n]

D = E [b[n]b"[n]] = diag(Po, P1, ..., Pu)

“+ {bk[n]}¥., are uncorrelated

@ Let s be the crosscorrelation vector

s2[so,....sm...]" =E[b[n]d*[n]]

© The normal equation for the optimal weight vector is:
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Joint Process Estimator: Summary

The name “joint process estimation” refers to the system’s
structure that performs two optimal estimation jointly:

@ One is a lattice predictor (characterized by '1,..., )
transforming a sequence of correlated samples u[n],
ul[n—1],...,u[n — M] into a sequence of uncorrelated

samples bo[n], b1[n], ..., bm[n].

@ The other is called a multiple regression filter (characterized
by k), which uses by[n], ..., by[n] to produce an estimate of
d[n].
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Inverse Filtering

The lattice predictor discussed just now can be viewed as an
analyzer, i.e., to represent an (approximately) AR process {u[n]}

using {['m}.
With some reconfiguration, we can obtain an inverse filter or a

synthesizer, i.e., we can reproduce an AR process by applying
white noise {v[n]} as the input to the filter.
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A 2-stage Inverse Filtering

yind unl
WT
WAIIR—~

By I >

uln] = v[n] = Mju[n — 1] = [5(T1u[n — 1] 4+ u[n — 2])
=v[n] = (M1 +T1l3) ufn —1] = T3 uln 2]
_*’—/ ?/
couln] + a3 quln — 1] + a3 uln — 2] = v[n]

= {u[n]} is an AR(2) process.
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Basic Building Block for All-pole Filtering

] Kuwalng
T xin-1l] = xnl] ~ Fyma[n 1]
o QU e ym[n] = Tmxm—1[n] + ym—1[n — 1]
Yol Y tnd = F,,,xm[n] + (]. — |Fm\2)ym,1[n — 1]

Ym[n] = TmXm—1[n] + ym-1[n — 1]
b IR R i
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All-pole Filter via Inverse Filtering

el =L Ty ]

This gives basically the same relation as the forward lattice module:

X o (M) : A : X wlny = TMU"A
t N v
0

o
\{w—(UL) —1‘—7@ I > \/MD\]:me\J

= u[n] = —a3 uln — 1] — a3 u[n — 2] + v[n] v[n] : white noise
vind Jit FHoin) U
Rite
Wt~
-X—‘
ba ] AN b )
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