Parametric Signal Modeling and Linear Prediction Theory 5. Lattice Predictor

Electrical & Computer Engineering North Carolina State University

Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland, College Park.

Contact: chauwai.wong@ncsu.edu. Updated: February 12, 2018.

ECE792-41 Lecture Part I

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator5.4 Inverse Filtering

Introduction

Recall: a forward or backward prediction-error filter can each be realized using a separate tapped-delay-line structure.

Lattice structure discussed in this section provides a powerful way to combine the FLP and BLP operations into a **single** structure.

5.1 Basic Lattice Structure 5.2 Correlation Properties 5.3 Joint Process Estimator

5.4 Inverse Filtering

Order Update for Prediction Errors

(Readings: Haykin §3.8)

Review:

• signal vector
$$\underline{u}_{m+1}[n] = \begin{bmatrix} \underline{u}_m[n] \\ u[n-m] \end{bmatrix} = \begin{bmatrix} u[n] \\ \underline{u}_m[n-1] \end{bmatrix}$$

2 Levinson-Durbin recursion:

$$\underline{a}_{m} = \begin{bmatrix} \underline{a}_{m-1} \\ 0 \end{bmatrix} + \Gamma_{m} \begin{bmatrix} 0 \\ \underline{a}_{m-1}^{B^{*}} \end{bmatrix} \text{ (forward)}$$
$$\underline{a}_{m}^{B^{*}} = \begin{bmatrix} 0 \\ \underline{a}_{m-1}^{B^{*}} \end{bmatrix} + \Gamma_{m}^{*} \begin{bmatrix} \underline{a}_{m-1} \\ 0 \end{bmatrix} \text{ (backward)}$$

5.1 Basic Lattice Structure 5.2 Correlation Properties 5.3 Joint Process Estimator 5.4 Inverse Filtering

Recursive Relations for $f_m[n]$ and $b_m[n]$

 $f_m[n] = \underline{a}_m^H \underline{u}_{m+1}[n]; \ b_m[n] = \underline{a}_m^{BT} \underline{u}_{m+1}[n]$

1 FLP:

$$f_{m}[n] = \begin{bmatrix} \underline{a}_{m-1}^{H} & 0 \end{bmatrix} \begin{bmatrix} \underline{u}_{m}[n] \\ u[n-m] \end{bmatrix} + \Gamma_{m}^{*} \begin{bmatrix} 0 & \underline{a}_{m-1}^{BT} \end{bmatrix} \begin{bmatrix} u[n] \\ \underline{u}_{m}[n-1] \end{bmatrix}$$
(Details)

$$f_m[n] = f_{m-1}[n] + \Gamma_m^* b_{m-1}[n-1]$$

2 BLP:

$$b_{m}[n] = \begin{bmatrix} 0 & \underline{a}_{m-1}^{BT} \end{bmatrix} \begin{bmatrix} u[n] \\ \underline{u}_{m}[n-1] \end{bmatrix} + \Gamma_{m} \begin{bmatrix} \underline{a}_{m-1}^{H} & 0 \end{bmatrix} \begin{bmatrix} \underline{u}_{m}[n] \\ u[n-m] \end{bmatrix}$$
(Details)

$$b_m[n] = b_{m-1}[n-1] + \Gamma_m f_{m-1}[n]$$

ECE792-41 Lecture Part I

5.1 Basic Lattice Structure

- 5.2 Correlation Properties 5.3 Joint Process Estimator
- 5.4 Inverse Filtering

Basic Lattice Structure

$$\begin{bmatrix} f_m[n] \\ b_m[n] \end{bmatrix} = \begin{bmatrix} 1 & \Gamma_m^* \\ \Gamma_m & 1 \end{bmatrix} \begin{bmatrix} f_{m-1}[n] \\ b_{m-1}[n-1] \end{bmatrix}, \ m = 1, 2, \dots, M$$

Signal Flow Graph (SFG)

5.1 Basic Lattice Structure

- 5.2 Correlation Properties
- 5.3 Joint Process Estimator
- 5.4 Inverse Filtering

Modular Structure

Recall $f_0[n] = b_0[n] = u[n]$, thus

To increase the order, we simply add more stages and reuse the earlier computations.

Using a tapped delay line implementation, we need M separate filters to generate $b_1[n], b_2[n], \ldots, b_M[n]$.

In contrast, a single lattice structure can generate $b_1[n], \ldots, b_M[n]$ as well as $f_1[n], \ldots, f_M[n]$ at the same time.

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator5.4 Inverse Filtering

Correlation Properties

Proof :

	Given from a zero-mean w.s.s. process:		Predict
(FLP)	$\{u[n-1],\ldots,u[n-M]\}$	\Rightarrow	u[n]
(BLP)	$\{u[n], u[n-1], \ldots, u[n-M+1]\}$	\Rightarrow	u[n-M]
1. Princ	iple of Orthogonality		

i.e., conceptually

$$\mathbb{E}\left[f_m[n]u^*[n-k]\right] = 0 \ (1 \le k \le m) \qquad \qquad f_m[n] \perp \underline{u}_m[n-1]$$
$$\mathbb{E}\left[b_m[n]u^*[n-k]\right] = 0 \ (0 \le k \le m-1) \qquad \qquad b_m[n] \perp \underline{u}_m[n]$$

2.
$$\mathbb{E}\left[f_m[n]u^*[n]\right] = \mathbb{E}\left[b_m[n]u^*[n-m]\right] = P_m$$

(Details)

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator5.4 Inverse Filtering

Correlation Properties

3. Correlations of error signals across orders:

(BLP)
$$\mathbb{E}\left[b_m[n]b_i^*[n]\right] = \begin{cases} P_m & i = m\\ 0 & i < m \text{ i.e., } b_m[n] \perp b_i[n] \end{cases}$$

$$(\mathsf{FLP}) \qquad \qquad \mathbb{E}\left[f_m[n]f_i^*[n]\right] = P_m \text{ for } i \leq m$$

<u>**Proof</u>** : (Details) (can obtain the case i > m by conjugation)</u>

<u>Remark</u> : The generation of $\{b_0[n], b_1[n], \dots, \}$ is like a **Gram-Schmidt** orthogonalization process on $\{u[n], u[n-1], \dots, \}$.

As a result, $\{b_i[n]\}_{i=0,1,...}$ is a new, **uncorrelated** representation of $\{u[n]\}$ containing exactly the **same information**.

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator5.4 Inverse Filtering

Correlation Properties

4. Correlations of error signals across orders and time:

$$\mathbb{E}[f_m[n]f_i^*[n-\ell]] = \mathbb{E}[f_m[n+\ell]f_i^*[n]] = 0 \ (1 \le \ell \le m-i, i < m)$$

$$\mathbb{E}[b_m[n]b_i^*[n-\ell]] = \mathbb{E}[b_m[n+\ell]b_i^*[n]] = 0 \ (0 \le \ell \le m-i-1, i < m)$$

Proof : (Details)

5. Correlations of error signals across orders and time:

$$\mathbb{E}\left[f_m[n+m]f_i^*[n+i]\right] = \begin{cases} P_m & i=m\\ 0 & i$$

 $\mathbb{E}\left[b_m[n+m]b_i^*[n+i]\right] = P_m \qquad i \le m$

5.1 Basic Lattice Structure 5.2 Correlation Properties 5.3 Joint Process Estimator 5.4 Inverse Filtering

Correlation Properties

6. Cross-correlations of FLP and BLP error signals:

$$\mathbb{E}\left[f_m[n]b_i^*[n]\right] = \begin{cases} \Gamma_i^*P_m & i \le m\\ 0 & i > m \end{cases}$$

Proof : (Details)

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator5.4 Inverse Filtering

Joint Process Estimator: Motivation

(Readings: Haykin $\S3.10$; Hayes $\S7.2.4$, $\S9.2.8$)

In (general) Wiener filtering theory, we use $\{x[n]\}$ process to estimate a desired response $\{d[n]\}$.

Solving the normal equation may require inverting the correlation matrix \mathbf{R}_{x} .

We now use the lattice structure to obtain a backward prediction error process $\{b_i[n]\}$ as an equivalent, uncorrelated representation of $\{u[n]\}$ that contains exactly the same information.

We then apply an optimal filter on $\{b_i[n]\}$ to estimate $\{d[n]\}$.

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator5.4 Inverse Filtering

Joint Process Estimator: Structure

$$\hat{d}\left[n|\mathbb{S}_{n}
ight]=\underline{k}^{H}\underline{b}_{\mathcal{M}+1}[n]$$
, where $\underline{k}=\left[k_{0},k_{1},\ldots,k_{\mathcal{M}}
ight]^{T}$

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator5.4 Inverse Filtering

Joint Process Estimator: Result

To determine the optimal weight to minimize MSE of estimation:

• Denote *D* as the $(M + 1) \times (M + 1)$ correlation matrix of $\underline{b}[n]$ $D = \mathbb{E}\left[\underline{b}[n]\underline{b}^{H}[n]\right] = \underset{\sim}{\text{diag}}(P_{0}, P_{1}, \dots, P_{M})$ $\therefore \{b_{k}[n]\}_{k=0}^{M} \text{ are uncorrelated}$

Let s be the crosscorrelation vector

$$\underline{s} \triangleq [s_0, \ldots, s_M \ldots]^T = \mathbb{E}[\underline{b}[n]d^*[n]]$$

③ The normal equation for the optimal weight vector is:

$$D\underline{k}_{opt} = \underline{s}$$

$$\Rightarrow \underline{k}_{opt} = D^{-1}\underline{s} = diag(P_0^{-1}, P_1^{-1}, \dots, P_M^{-1})\underline{s}$$

i.e., $k_i = P_i^{-1}s_i, i = 0, \dots, M$

ECE792-41 Lecture Part I

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator5.4 Inverse Filtering

Joint Process Estimator: Summary

The name "joint process estimation" refers to the system's structure that performs two optimal estimation jointly:

- One is a lattice predictor (characterized by Γ₁,..., Γ_M) transforming a sequence of correlated samples u[n], u[n-1],..., u[n-M] into a sequence of uncorrelated samples b₀[n], b₁[n],..., b_M[n].
- The other is called a **multiple regression filter** (characterized by <u>k</u>), which uses $b_0[n], \ldots, b_M[n]$ to produce an estimate of d[n].

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator

5.4 Inverse Filtering

Inverse Filtering

The lattice predictor discussed just now can be viewed as an analyzer, i.e., to represent an (approximately) AR process $\{u[n]\}$ using $\{\Gamma_m\}$.

With some reconfiguration, we can obtain an inverse filter or a synthesizer, i.e., we can reproduce an AR process by applying white noise $\{v[n]\}$ as the input to the filter.

- 5.1 Basic Lattice Structure
- 5.2 Correlation Properties
- 5.3 Joint Process Estimator
- 5.4 Inverse Filtering

A 2-stage Inverse Filtering

$$u[n] = v[n] - \Gamma_1^* u[n-1] - \Gamma_2^* (\Gamma_1 u[n-1] + u[n-2])$$

= $v[n] - \underbrace{(\Gamma_1^* + \Gamma_1 \Gamma_2^*)}_{a_{2,1}^*} u[n-1] - \underbrace{\Gamma_2^*}_{a_{2,2}^*} u[n-2]$

 $∴ u[n] + a_{2,1}^* u[n-1] + a_{2,2}^* u[n-2] = v[n]$ $\Rightarrow \{u[n]\} \text{ is an } AR(2) \text{ process.}$

5.1 Basic Lattice Structure5.2 Correlation Properties5.3 Joint Process Estimator

5.4 Inverse Filtering

Basic Building Block for All-pole Filtering

- -

$$\Rightarrow \begin{cases} x_m[n] = x_{m-1}[n] + \Gamma_m^* y_{m-1}[n-1] \\ y_m[n] = \Gamma_m x_{m-1}[n] + y_{m-1}[n-1] \end{cases}$$
$$\therefore \begin{bmatrix} x_m[n] \\ y_m[n] \end{bmatrix} = \begin{bmatrix} 1 & \Gamma_m^* \\ \Gamma_m & 1 \end{bmatrix} \begin{bmatrix} x_{m-1}[n] \\ y_{m-1}[n-1] \end{bmatrix}$$

5.1 Basic Lattice Structure

- 5.2 Correlation Properties
- 5.3 Joint Process Estimator
- 5.4 Inverse Filtering

All-pole Filter via Inverse Filtering

$$\begin{bmatrix} x_m[n] \\ y_m[n] \end{bmatrix} = \begin{bmatrix} 1 & \Gamma_m^* \\ \Gamma_m & 1 \end{bmatrix} \begin{bmatrix} x_{m-1}[n] \\ y_{m-1}[n-1] \end{bmatrix}$$

This gives basically the same relation as the forward lattice module:

