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Introduction

Recall: a forward or backward prediction-error filter can each be
realized using a separate tapped-delay-line structure.

Lattice structure discussed in this section provides a powerful way
to combine the FLP and BLP operations into a single structure.
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Order Update for Prediction Errors

(Readings: Haykin §3.8)

Review:

1 signal vector um+1[n] =

[
um[n]

u[n −m]

]
=

[
u[n]

um[n − 1]

]
2 Levinson-Durbin recursion:

am =

[
am−1

0

]
+ Γm

[
0

aB
∗

m−1

]
(forward)

aB
∗

m =

[
0

aB
∗

m−1

]
+ Γ∗

m

[
am−1

0

]
(backward)
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Recursive Relations for fm[n] and bm[n]

fm[n] = aHmum+1[n]; bm[n] = aBTm um+1[n]

1 FLP:

fm[n] =
[
aHm−1 0

] [ um[n]
u[n −m]

]
+ Γ∗

m

[
0 aBTm−1

] [ u[n]
um[n − 1]

]
(Details)

fm[n] = fm−1[n] + Γ∗
mbm−1[n − 1]

2 BLP:

bm[n] =
[

0 aBTm−1

] [ u[n]
um[n − 1]

]
+ Γm

[
aHm−1 0

] [ um[n]
u[n −m]

]
(Details)

bm[n] = bm−1[n − 1] + Γmfm−1[n]
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Basic Lattice Structure

[
fm[n]
bm[n]

]
=

[
1 Γ∗

m

Γm 1

] [
fm−1[n]

bm−1[n − 1]

]
, m = 1, 2, . . . ,M

Signal Flow Graph (SFG)
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Modular Structure

Recall f0[n] = b0[n] = u[n], thus

To increase the order, we simply add more stages and reuse the
earlier computations.

Using a tapped delay line implementation, we need M separate
filters to generate b1[n], b2[n], . . . , bM [n].

In contrast, a single lattice structure can generate b1[n], . . . , bM [n]
as well as f1[n], . . . , fM [n] at the same time.
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Correlation Properties

Given from a zero-mean w.s.s.
process:

Predict

(FLP) {u[n − 1], . . . , u[n −M]} ⇒ u[n]

(BLP) {u[n], u[n− 1], . . . , u[n−M + 1]} ⇒ u[n −M]

1. Principle of Orthogonality
i.e., conceptually

E [fm[n]u∗[n − k]] = 0 (1 ≤ k ≤ m) fm[n] ⊥ um[n − 1]

E [bm[n]u∗[n − k]] = 0 (0 ≤ k ≤ m− 1) bm[n] ⊥ um[n]

2. E [fm[n]u∗[n]] = E [bm[n]u∗[n −m]] = Pm

Proof : (Details)
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Correlation Properties

3. Correlations of error signals across orders:

(BLP) E [bm[n]b∗i [n]] =

{
Pm i = m

0 i < m i.e., bm[n] ⊥ bi [n]

(FLP) E [fm[n]f ∗i [n]] = Pm for i ≤ m

Proof : (Details) (can obtain the case i > m by conjugation)

Remark : The generation of {b0[n], b1[n], . . . , } is like a
Gram-Schmidt orthogonalization process on {u[n], u[n− 1], . . . , }.

As a result, {bi [n]}i=0,1,... is a new, uncorrelated representation of
{u[n]} containing exactly the same information.
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Correlation Properties

4. Correlations of error signals across orders and time:

E [fm[n]f ∗i [n − `]] = E [fm[n + `]f ∗i [n]] = 0 (1 ≤ ` ≤ m − i , i < m)

E [bm[n]b∗i [n − `]] = E [bm[n + `]b∗i [n]] = 0 (0 ≤ ` ≤ m − i − 1, i < m)

Proof : (Details)

5. Correlations of error signals across orders and time:

E [fm[n + m]f ∗i [n + i ]] =

{
Pm i = m

0 i < m

E [bm[n + m]b∗i [n + i ]] = Pm i ≤ m

Proof : (Details)

ECE792-41 Lecture Part I 9 / 29



5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Correlation Properties

6. Cross-correlations of FLP and BLP error signals:

E [fm[n]b∗i [n]] =

{
Γ∗
i Pm i ≤ m

0 i > m

Proof : (Details)
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Joint Process Estimator: Motivation

(Readings: Haykin §3.10; Hayes §7.2.4, §9.2.8)

In (general) Wiener filtering theory, we use {x [n]} process to
estimate a desired response {d [n]}.

Solving the normal equation may require inverting the correlation
matrix Rx .

We now use the lattice structure to obtain a backward prediction
error process {bi [n]} as an equivalent, uncorrelated representation
of {u[n]} that contains exactly the same information.

We then apply an optimal filter on {bi [n]} to estimate {d [n]}.
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Joint Process Estimator: Structure

d̂ [n|Sn] = kHbM+1[n], where k = [k0, k1, . . . , kM ]T
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Joint Process Estimator: Result

To determine the optimal weight to minimize MSE of estimation:

1 Denote D as the (M + 1)× (M + 1) correlation matrix of b[n]

D = E
[
b[n]bH [n]

]
= diag

:::
(P0,P1, . . . ,PM)

∵ {bk [n]}Mk=0 are uncorrelated

2 Let s be the crosscorrelation vector

s , [s0, . . . , sM . . .]T = E [b[n]d∗[n]]

3 The normal equation for the optimal weight vector is:

Dkopt = s

⇒ kopt = D−1s = diag(P−1
0 ,P−1

1 , . . . ,P−1
M )s

i.e., ki = P−1
i si , i = 0, . . . ,M

ECE792-41 Lecture Part I 13 / 29



5 Lattice Predictor
Appendix: Detailed Derivations

5.1 Basic Lattice Structure
5.2 Correlation Properties
5.3 Joint Process Estimator
5.4 Inverse Filtering

Joint Process Estimator: Summary

The name “joint process estimation” refers to the system’s
structure that performs two optimal estimation jointly:

One is a lattice predictor (characterized by Γ1, . . . , ΓM)
transforming a sequence of correlated samples u[n],
u[n − 1], . . . , u[n −M] into a sequence of uncorrelated
samples b0[n], b1[n], . . . , bM [n].

The other is called a multiple regression filter (characterized
by k), which uses b0[n], . . . , bM [n] to produce an estimate of
d [n].
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Inverse Filtering

The lattice predictor discussed just now can be viewed as an
analyzer, i.e., to represent an (approximately) AR process {u[n]}
using {Γm}.

With some reconfiguration, we can obtain an inverse filter or a
synthesizer, i.e., we can reproduce an AR process by applying
white noise {v [n]} as the input to the filter.
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A 2-stage Inverse Filtering

u[n] = v [n]− Γ∗
1u[n − 1]− Γ∗

2(Γ1u[n − 1] + u[n − 2])

= v [n]− (Γ∗
1 + Γ1Γ∗

2)︸ ︷︷ ︸
a∗2,1

u[n − 1]− Γ∗
2︸︷︷︸

a∗2,2

u[n − 2]

∴ u[n] + a∗2,1u[n − 1] + a∗2,2u[n − 2] = v [n]

⇒ {u[n]} is an AR(2) process.
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Basic Building Block for All-pole Filtering


xm−1[n] = xm[n]− Γ∗

mym−1[n − 1]

ym[n] = Γmxm−1[n] + ym−1[n − 1]

= Γmxm[n] + (1− |Γm|2)ym−1[n − 1]

⇒

{
xm[n] = xm−1[n] + Γ∗

mym−1[n − 1]

ym[n] = Γmxm−1[n] + ym−1[n − 1]

∴

[
xm[n]
ym[n]

]
=

[
1 Γ∗

m

Γm 1

] [
xm−1[n]

ym−1[n − 1]

]
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All-pole Filter via Inverse Filtering[
xm[n]
ym[n]

]
=

[
1 Γ∗

m

Γm 1

] [
xm−1[n]

ym−1[n − 1]

]
This gives basically the same relation as the forward lattice module:

⇒ u[n] = −a∗2,1u[n − 1]− a∗2,2u[n − 2] + v [n] v [n] : white noise
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