Parametric Signal Modeling and Linear Prediction Theory 5. Lattice Predictor

Electrical & Computer Engineering North Carolina State University

Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland, College Park.

Contact: chauwai.wong@ncsu.edu. Updated: February 12, 2018.

[ECE792-41 Lecture Part I](#page--1-0) $1/29$

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Introduction

Recall: a forward or backward prediction-error filter can each be realized using a separate tapped-delay-line structure.

Lattice structure discussed in this section provides a powerful way to combine the FLP and BLP operations into a **single** structure.

[5.1 Basic Lattice Structure](#page-2-0)

[5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Order Update for Prediction Errors

(Readings: Haykin §3.8)

Review:

① signal vector
$$
\underline{u}_{m+1}[n] = \begin{bmatrix} \underline{u}_m[n] \\ u[n-m] \end{bmatrix} = \begin{bmatrix} u[n] \\ \underline{u}_m[n-1] \end{bmatrix}
$$

² Levinson-Durbin recursion:

$$
\underline{a}_{m} = \begin{bmatrix} \frac{a_{m-1}}{0} \end{bmatrix} + \Gamma_{m} \begin{bmatrix} 0 \\ \frac{a_{m-1}}{0} \end{bmatrix}
$$
 (forward)

$$
\underline{a}_{m}^{B^{*}} = \begin{bmatrix} 0 \\ \frac{a_{m-1}}{0} \end{bmatrix} + \Gamma_{m}^{*} \begin{bmatrix} \frac{a_{m-1}}{0} \end{bmatrix}
$$
 (backward)

[5.1 Basic Lattice Structure](#page-2-0)

- [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0)
- [5.4 Inverse Filtering](#page-14-0)

Recursive Relations for $f_m[n]$ and $b_m[n]$

$$
f_m[n] = \underline{a}_m^H \underline{u}_{m+1}[n]; \; b_m[n] = \underline{a}_m^{BT} \underline{u}_{m+1}[n]
$$

9 FLP:

\n
$$
f_m[n] = \left[\begin{array}{c} \frac{d}{2m-1} \end{array}\right] \left[\begin{array}{c} \frac{d}{m}[n] \\ u[n-m] \end{array}\right] + \Gamma_m^* \left[\begin{array}{c} 0 \end{array}\right] \frac{e^{BT}}{2m-1} \right] \left[\begin{array}{c} u[n] \\ \frac{d}{m}[n-1] \end{array}\right]
$$
\n(Details)

$$
f_m[n] = f_{m-1}[n] + \Gamma_m^* b_{m-1}[n-1]
$$

9 BLP:

\n
$$
b_m[n] = \left[0 \left| \underline{a}_{m-1}^{BT}\right| \left[\begin{array}{c} u[n] \\ \underline{u}_m[n-1] \end{array}\right] + \Gamma_m \left[\underline{a}_{m-1}^H \left|0\right| \left[\begin{array}{c} \underline{u}_m[n] \\ u[n-m] \end{array}\right] \right]
$$
\n(Details)

$$
b_m[n] = b_{m-1}[n-1] + \lceil_m f_{m-1}[n] \rceil
$$

[ECE792-41 Lecture Part I](#page-0-0) $4/29$

[5.1 Basic Lattice Structure](#page-2-0)

- [5.2 Correlation Properties](#page-6-0)
- [5.3 Joint Process Estimator](#page-10-0)
- [5.4 Inverse Filtering](#page-14-0)

Basic Lattice Structure

$$
\left[\begin{array}{c} f_m[n] \\ b_m[n] \end{array}\right] = \left[\begin{array}{cc} 1 & \Gamma_m^* \\ \Gamma_m & 1 \end{array}\right] \left[\begin{array}{c} f_{m-1}[n] \\ b_{m-1}[n-1] \end{array}\right], \ m = 1, 2, \ldots, M
$$

Signal Flow Graph (SFG)

[5.1 Basic Lattice Structure](#page-2-0)

- [5.2 Correlation Properties](#page-6-0)
- [5.3 Joint Process Estimator](#page-10-0)
- [5.4 Inverse Filtering](#page-14-0)

Modular Structure

Recall $f_0[n] = b_0[n] = u[n]$, thus

To increase the order, we simply add more stages and reuse the earlier computations.

Using a tapped delay line implementation, we need M separate filters to generate $b_1[n], b_2[n], \ldots, b_M[n]$.

In contrast, a single lattice structure can generate $b_1[n], \ldots, b_M[n]$ as well as $f_1[n], \ldots, f_M[n]$ at the same time.

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Correlation Properties

Proof :

1. Principle of Orthogonality

(Details)

i.e., conceptually

$$
\mathbb{E}\left[f_m[n]u^*[n-k]\right] = 0 \quad (1 \leq k \leq m) \qquad f_m[n] \perp \underline{u}_m[n-1]
$$
\n
$$
\mathbb{E}\left[b_m[n]u^*[n-k]\right] = 0 \quad (0 \leq k \leq m-1) \qquad b_m[n] \perp \underline{u}_m[n]
$$

2.
$$
\mathbb{E}[f_m[n]u^*[n]] = \mathbb{E}[b_m[n]u^*[n-m]] = P_m
$$

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Correlation Properties

3. Correlations of error signals across orders:

$$
(BLP) \t\t\t\t\mathbb{E}[b_m[n]b_i^*[n]] = \begin{cases} P_m & i = m \\ 0 & i < m \ \text{i.e., } b_m[n] \perp b_i[n] \end{cases}
$$

$$
(\mathsf{FLP}) \qquad \mathbb{E}\left[f_m[n]f_i^*[n]\right] = P_m \text{ for } i \leq m
$$

Proof : (Details) (can obtain the case $i > m$ by conjugation)

Remark : The generation of $\{b_0[n], b_1[n], \ldots, \}$ is like a **Gram-Schmidt** orthogonalization process on $\{u[n], u[n-1], \ldots\}$.

As a result, $\{b_i[n]\}_{i=0,1,...}$ is a new, ${\sf uncorrelated}$ representation of $\{u[n]\}$ containing exactly the **same information**.

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Correlation Properties

- 4. Correlations of error signals across orders and time: $\mathbb{E} [f_m[n] f_i^* [n - \ell]] = \mathbb{E} [f_m[n + \ell] f_i^* [n]] = 0 \ (1 \le \ell \le m - i, i < m)$ $\mathbb{E} [b_m[n] b_i^*[n-\ell]] = \mathbb{E} [b_m[n+\ell] b_i^*[n]] = 0 \ (0 \le \ell \le m - i - 1, i < m)$ Proof : (Details)
- 5. Correlations of error signals across orders and time:

$$
\mathbb{E}\left[f_m[n+m]f_i^*[n+i]\right] = \begin{cases} P_m & i = m \\ 0 & i < m \end{cases}
$$

 $\mathbb{E}\left[b_m[n+m]b_i^*[n+i]\right]=P_m$ $i\leq m$

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Correlation Properties

6. Cross-correlations of FLP and BLP error signals:

$$
\mathbb{E}\left[f_m[n]b_i^*[n]\right] = \begin{cases} \Gamma_i^* P_m & i \leq m \\ 0 & i > m \end{cases}
$$

Proof : (Details)

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Joint Process Estimator: Motivation

(Readings: Haykin §3.10; Hayes §7.2.4, §9.2.8)

In (general) Wiener filtering theory, we use $\{x[n]\}$ process to estimate a desired response $\{d[n]\}.$

Solving the normal equation may require inverting the correlation matrix \mathbf{R}_{x} .

We now use the lattice structure to obtain a backward prediction error process $\{b_i[n]\}$ as an equivalent, uncorrelated representation of $\{u[n]\}$ that contains exactly the same information.

We then apply an optimal filter on $\{b_i[n]\}$ to estimate $\{d[n]\}.$

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Joint Process Estimator: Structure

$$
\hat{d}[n|\mathbb{S}_n] = \underline{k}^H \underline{b}_{M+1}[n], \text{ where } \underline{k} = [k_0, k_1, \dots, k_M]^T
$$

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Joint Process Estimator: Result

To determine the optimal weight to minimize MSE of estimation:

1 Denote D as the $(M + 1) \times (M + 1)$ correlation matrix of $\underline{b}[n]$ $D = \mathbb{E}\left[\underline{b}[n]\underline{b}^H[n]\right] = \underset{\sim \infty}{\text{diag}}(P_0, P_1, \ldots, P_M)$ $\therefore\ \{b_k[n]\}_{k=0}^M$ are uncorrelated

\n- Let
$$
\underline{s}
$$
 be the crosscorrelation vector
\n- $\underline{s} \triangleq [s_0, \ldots, s_M \ldots]^T = \mathbb{E} \left[\underline{b}[n] d^*[n] \right]$
\n

3 The normal equation for the optimal weight vector is:

$$
D\underline{k}_{opt} = \underline{s}
$$

\n
$$
\Rightarrow \underline{k}_{opt} = D^{-1}\underline{s} = \text{diag}(P_0^{-1}, P_1^{-1}, \dots, P_M^{-1})\underline{s}
$$

\ni.e., $k_i = P_i^{-1}s_i, i = 0, \dots, M$

[ECE792-41 Lecture Part I](#page-0-0) 13 / 29

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0) [5.3 Joint Process Estimator](#page-10-0) [5.4 Inverse Filtering](#page-14-0)

Joint Process Estimator: Summary

The name "joint process estimation" refers to the system's structure that performs two optimal estimation jointly:

- One is a lattice predictor (characterized by $\Gamma_1, \ldots, \Gamma_M$) transforming a sequence of correlated samples $u[n]$, $u[n-1], \ldots, u[n-M]$ into a sequence of uncorrelated samples $b_0[n], b_1[n], \ldots, b_M[n]$.
- The other is called a multiple regression filter (characterized by \underline{k}), which uses $b_0[n], \ldots, b_M[n]$ to produce an estimate of $d[n]$.

[5.1 Basic Lattice Structure](#page-2-0) [5.2 Correlation Properties](#page-6-0)

-
- [5.3 Joint Process Estimator](#page-10-0)
- [5.4 Inverse Filtering](#page-14-0)

Inverse Filtering

The lattice predictor discussed just now can be viewed as an analyzer, i.e., to represent an (approximately) AR process $\{u[n]\}$ using $\{\Gamma_m\}$.

With some reconfiguration, we can obtain an inverse filter or a synthesizer, i.e., we can reproduce an AR process by applying white noise $\{v[n]\}$ as the input to the filter.

- [5.1 Basic Lattice Structure](#page-2-0)
- [5.2 Correlation Properties](#page-6-0)
- [5.3 Joint Process Estimator](#page-10-0)
- [5.4 Inverse Filtering](#page-14-0)

A 2-stage Inverse Filtering

$$
u[n] = v[n] - \Gamma_1^* u[n-1] - \Gamma_2^* (\Gamma_1 u[n-1] + u[n-2])
$$

= $v[n] - \underbrace{(\Gamma_1^* + \Gamma_1 \Gamma_2^*)}_{a_{2,1}^*} u[n-1] - \underbrace{\Gamma_2^*}_{a_{2,2}^*} u[n-2]$

∴ $u[n] + a_{2,1}^* u[n-1] + a_{2,2}^* u[n-2] = v[n]$ \Rightarrow {u[n]} is an AR(2) process.

[5.1 Basic Lattice Structure](#page-2-0)

- [5.2 Correlation Properties](#page-6-0)
- [5.3 Joint Process Estimator](#page-10-0)
- [5.4 Inverse Filtering](#page-14-0)

Basic Building Block for All-pole Filtering

 \sim \sim

$$
\frac{\frac{\lambda_{m-1}[N]}{\lambda_{m-1}[n]}}{\frac{\lambda_{m-1}[n]}{\lambda_{m-1}[n]}} \qquad \qquad \begin{cases} \frac{\lambda_{m-1}[n]}{n} = \lambda_m[n] - \Gamma_m^* y_{m-1}[n-1] \\ y_m[n] = \Gamma_m x_{m-1}[n] + y_{m-1}[n-1] \\ = \Gamma_m x_m[n] + (1 - |\Gamma_m|^2) y_{m-1}[n-1] \end{cases}
$$

$$
\Rightarrow \begin{cases} x_m[n] = x_{m-1}[n] + \Gamma_m^* y_{m-1}[n-1] \\ y_m[n] = \Gamma_m x_{m-1}[n] + y_{m-1}[n-1] \end{cases}
$$

$$
\therefore \begin{bmatrix} x_m[n] \\ y_m[n] \end{bmatrix} = \begin{bmatrix} 1 & \Gamma_m^* \\ \Gamma_m & 1 \end{bmatrix} \begin{bmatrix} x_{m-1}[n] \\ y_{m-1}[n-1] \end{bmatrix}
$$

[5.1 Basic Lattice Structure](#page-2-0)

- [5.2 Correlation Properties](#page-6-0)
- [5.3 Joint Process Estimator](#page-10-0)
- [5.4 Inverse Filtering](#page-14-0)

All-pole Filter via Inverse Filtering

$$
\left[\begin{array}{c} x_m[n] \\ y_m[n] \end{array}\right] = \left[\begin{array}{cc} 1 & \Gamma_m^* \\ \Gamma_m & 1 \end{array}\right] \left[\begin{array}{c} x_{m-1}[n] \\ y_{m-1}[n-1] \end{array}\right]
$$

This gives basically the same relation as the forward lattice module:

