
ECE 792-41 Homework 6

Material Covered: Lagrange Multipliers, Spectrum Estimation, ACF

Estimator, Durbin’s Method, Order Selection

Problem 1* A linear array consists of M uniformly spaced sensors. The individual sensor outputs

are weighted and then summed, producing the output

e(n) =
M∑
k=1

ω∗kuk(n)

where uk(n) is the output of sensor k at time n, and ωk is the associated weight. The weights

are chosen to minimize the mean-square value of e(n), subject to the constraint

wHs = 1

where s is a prescribed steering vector. By using the method of Lagrange multipliers, show

that the optimum value of the vector w is

w0 =
R−1s

sHR−1s

where R is the spatial correlation matrix of the linear array.

Hint: Construct a Lagrange function that is real valued. Let f(w) be the expression of the con-

straint. You may construct a real valued version of the constraint expression by Re{2f(w)}

= f(w) +f∗(w). Recall we discussed in lecture that when taking partial derivative, consider

w and w∗ as independent parameters.

Problem 2* Consider a discrete-time stochastic process {u(n)} that consists of K (uncorrelated)

complex sinusoids plus additive white noise of zero mean and variance σ2. That is,

u(n) =
K∑
k=1

Ake
jωkn + v(n)

where the terms Ake
jωkn and v(n) refer to the kth sinusoid and noise, respectively. The

process {u(n)} is applied to a transversal filter with M taps, producing the output

e(n) = wHu(n)
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Assume that M > K. The requirement is to choose the tap-weight vector w so as to minimize

the mean-square value of e(n), subject to the multiple signal-protection constraint

SHw = D
1
21

where S is the M × K signal matrix whose kth column has 1, ejωk , . . . , ejωk(M−1) for its

elements, D is the K ×K diagonal matrix whose nonzero elements equal the average powers

of the individual sinusoids, and the K × 1 vector 1 has 1’s for all its elements. Using the

method of Lagrange multipliers, show that the value of the optimum weight vector that

results from the constraint optimization equals

w0 = R−1S(SHR−1S)−1D
1
21

where R is the correlation matrix of the M × 1 tap-input vector u(n).

[ Note: The vector w0 in the previous problem is known as the spatial version of the Minimum

Variance Distortionless Response (MVDR) from the array signal processing literature. And

the result of w0 in this problem represents a temporal generalization of the MVDR formula.

For more details on MVDR beamforming method, refer to Haykin’s book Adaptive Filter

Theory. ]

Problem 3* In this problem, we show that the periodogram is an inconsistent estimator by ex-

amining the estimator at f = 0 :

P̂PER(0) =
1

N

(
N−1∑
n=0

x[n]

)2

.

If x[n] is a real white Gaussian noise process with PSD

Pxx(f) = σ2x

find the mean and variance of P̂PER(0). Does the variance converge to zero as N →∞? Hint:

Note that

P̂PER(0) = σ2x

(
N−1∑
n=0

x[n]

σx
√
N

)2

where the quantity inside the parentheses is ∼ N(0, 1).
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Problem 4* Consider the estimator

P̂AV-PER(0) =
1

N

N−1∑
m=0

P̂
(m)
PER(0)

where

P̂
(m)
PER(0) = x2[m]

for the process from the previous problem. This estimator may be viewed as an averaged

periodogram. In essence the data record is sectioned into blocks (in this case, of length 1) and

the periodograms for each block are averaged. Find the mean and variance of P̂AV-PER(0).

Compare this result to that obtained in the previous problem.

Problem 5* Find the variance of the unbiased ACF estimator

r̂′xx[k] = 1
N−k

∑N−1−k
n=0 x[n]x[n+ k] 0 ≤ k ≤ N − 1

for real data which is a zero-mean white Gaussian process with variance σ2x. What happens

as the lag k increases? Using the variance of the unbiased ACF estimator you obtained, find

the variance of the biased ACF estimator

r̂xx[k] =
1

N

N−1−k∑
n=0

x[n]x[n+ k]

without going through the derivation again. What happens as the lag k increases?

Hint: With the help of the Isserlis’ theorem, first prove that for any real zero-mean Gaussian

process the variance of the unbiased ACF estimator is

V (r̂′xx[k]) =
1

N − k

N−1−k∑
j=−(N−1−k)

(
1− | j |

N − k

)
(r2xx[j] + rxx[j + k]rxx[j − k]).

Problem 6* Implement the Durbin’s method for estimating an order-4 moving average model.

Let the maximum allowed order of the approximated model L to be 8, 16, ..., or 1024. For each

L, repeat the calculation for the estimated psd and estimated MA coefficients 1000 times,

and store the results for the tasks below. You may reuse the Levinson-Durbin recursion code

from your project.
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(a) Draw in one plot a family of 8 MSE curves for estimated psd against frequency. Each

MSE curve corresponds to a specific value of L, and should be the averaged MSE of

1000 realizations. Properly label the curves with Matlab function legend.

(b) Draw in one plot a family of 8 MSE curves of estimated MA coefficients against the

index of the coefficient. Properly label the curves.

(c) For each MA coefficient, draw one error-bar plot against L using Matlab function

errorbar. Sample mean and sample standard deviation should be supplied as pa-

rameters y and err of the errorbar. L-axis should be in the log10 scale.

(d) Summarize the effect of L based on the plots in (a)–(c).

Problem 7* Generate a length-10000 AR(2) signal. What are the selected orders by AIC, MDL,

10-fold cross-validation, and leave-one-out cross-validation? Note that you should use Yule–Walker

equations for estimating the AR coefficients. For the purpose of cross-validation, you may

consider cutting the AR signal into 50 non-overlapped segments of length 200, and consider

each segment as a data point. Explain how you calculate r̂(k) during the cross-validation.

Comment on the results you obtained. Repeat the problem for a length-10000 AR(10) signal.

You may reuse the AR process related code from your project.
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