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Model Selection Definition

Model Selection: Choose the best model out of a set of
candidate models.

Model Assessment: Having chosen a final model, estimating its
prediction/generalization error on new data.

Readings: Chapter 7 of Hastie et al.
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Model Selection Examples

(1) Time series:

S1 = {AR(1),AR(2),AR(3), ...}

(2) Linear regression:

yi = �0 + �1x1i + · · ·+ �pxpi + ei , i = 1, . . . , 50.

S2 =
�
�0 6= 0,�1 6= 0, . . . , (�0,�1) 6= 0

e
, (�0,�2) 6= 0

e
,

. . . , (�0, . . . ,�p) 6= 0
e
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Model Selection Examples (cont’d)

(3) Harmonic model:

y(n) =
pX

i=0

Aie
j(!i n+�) + v(n), n = 0, . . . , 999,

where v(n) ⇠ N(0,�2
v ), � ⇠ Uni(0, 2⇡], and (Ai ,!i ) are fixed but

unknown parameters.

S3 =
�
A0 6= 0, . . . , (A0,A1) 6= 0

e
, . . . , (A0, . . . ,Ap) 6= 0

e
 

Note that |S2| = |S3| = 2p+1 � 1.
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Model Selection Criterion: Generalization Performance

A learning method’s generalization performance is reflected by
its prediction capability assessed using new/test data drawn from
the same population where the data used for training were drawn.
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Model Selection in Ideal, Data-Rich Scenario

Split data into two three sets:

Training Validation Test

1 Fit K candidate models to the training data.

2 Evaluate the prediction errors using validation data for all
models. Select the model with the smallest prediction error.
This is called the “validation error.”

3 Test the selected model using the test data and evaluate the
prediction error. This is called the “test/generalization error.”

4 Question: Why can’t validation error be considered as the
generalization error? (Hint: Test data mustn’t be seen by the
model selection process.)
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Model Selection in Practical, Data-Limited Scenario

Strategy Method

Sample reuse Crossvalidation, Bootstrap

Analytically approximate AIC, BIC, MDL, etc.

test/generalization step
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Convention: lower vs. upper cases—deterministic vs. random;
upper case & bold—deterministic matrix; Tilde below—vector.

Notations: yi response, xei
collection of predictors for yi ,

T =
�
(x
ei
, yi ), i = 1, . . . ,N

 
deterministic data set,

f̂T (·) or ŷT (·) prediction function based on/conditioned on T ,
L( · , · ) loss function, e.g., L(a, b) = (a� b)2 or L(a, b) = |a� b|.

Examples when the prediction function is linear:
2
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=
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e
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e
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Definitions of Test and Training Errors

Generalization/Test error

ErrT = E
⇥
L(Y 0, f̂T (Xe

0)|T
⇤
(extra-sample error).

Expected generalization/test error

Err = E[ErrT ] = E
h
E
⇥
L(Y 0, f̂T (Xe

0)|T
⇤i

= E
⇥
L(Y 0, f̂T (Xe

0)
⇤
.

Training error

err =
1

N

NX

i=1

L(yi , f̂T (xei
)).

Question: How can you modify the definition of training error to
define validation error?
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Cross-Validation Motivation & Example

Cross-Validation (CV), sometimes called rotation estimation, or
out-of-sample testing.

Data Reuse: Each segment will act as the validation set once,
while data in the remaining K � 1 segments are used to calculate a
prediction model.

K -Fold CV, typical choice K = 5 or 10. A random partition
example when K = 5:

Train Train Train Valida-
tion Train

Data index: 4, 6 1, 5 2, 10 7, 9 3, 8

Segment index: 1 2 3 4 5
A random partition

when K = 5

A training-validation split when
the 4th segment is acting as the validation set.
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Cross-Validation Error

Cross-Validation error

CV (f̂ ) =
1

N

NX

i=1

L(yi , f̂
�(i)(x

ei
)),

where  : {1, . . . ,N} ! {1, . . . ,K} is a random partition function.

All data points, (x
ei
, yi ), i = 1, . . . ,N, or all segments, contribute to

the CV error.

CV error is used to approximate the generalization error.

Note: CV (f̂ ) estimates the expected generalization error, Err,
better than the conditional generalization error, ErrT . (See Section
7.12 for more details.)
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LOOCV and One SE Rule

Leave-One-Out Cross-Validation (LOOCV): A special case of
CV when K = N. Approximately unbiased but has large variance
as the training datasets are almost the same.

“One standard error rule”: Choose the most parsimonious model.
Example: CV error for linear regression on polynomials

p̂lowest = 4 and p̂one-std-rule = 3.
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Analytic Approximations

Observation: Training error err < ErrT , because the fitted model
f̂T has adapted to data T .

Can we find an correction term and add it to the training error to
approximate the generalization error, i.e., err +⇤ = ErrT ?

In-sample prediction error

Errin =
1

N

NX

k=1

E
⇥
L(Y 0

k , f̂T (xek
))|T

⇤
,

which is defined similarly to ErrT but uses {(x
ei
,Y 0

i )}Ni=1 instead of
{(X 0

i ,Y
0
i )}1i=1.

Errin ⇡ ErrT if (1) x
ei

is uniformly sampled from population, and
(2) N is large.
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The Correction Term: Optimism

Optimism

op
def
= Errin � err.

Expected optimism

!
def
= E[op|{x

ei
}Ni=1].

Example: ! = 2
N

PN
i=1 cov(ŷi , yi ). The harder we fit, the greater

the covariance, and the more op.
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Analytic Form of Optimism

E[Errin|{xei
}] = err +

2

N

NX

i=1

cov(ŷi , yi ).

If ŷi is from linear model with d predictors, we have

E[Errin|{xei
}] = err + 2 · d

N
· �2

e .

Try to validate the above expression for parameters d , N, and �2
e

using a linear regression model as a special case.
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Analytic Approximations

Analytic Models: Akaike information criterion (AIC), Bayesian
information criterion (BIC), Minimum description length (MDL).

? One way to estimate the in-sample prediction error Errin is to
estimate the optimism and then add it to the training error err:

AIC or Cp = err + 2 · d
N

· �̂2
e

BIC =
N

�̂2
e

h
err + (logN) · d

N
· �̂2

e

i
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Detailed Derivations

Chau-Wai Wong ECE792-41 Lecture 17 / 20



Model Selection
Generalization Performance
Sample Reuse (Cross-Validation, Bootstrap)
Analytic approximation (AIC, BIC, MDL)

Evaluating E
⇥
Errin|{xei

}
⇤

E
⇥
Errin|{x

e
i}
⇤
= E

"
1

N

NX

k=1

E
⇥
L(Y 0

k , f̂T (x
e
k))|T

⇤���{x
e
i}
#

=
1

N

NX

k=1

E
h
E
⇥
L(Y 0

k , f̂T (x
e
k))|{x

e
i}, {yi}

⇤���{x
e
i}
i

=
1

N

NX

k=1

E
⇥
L(Y 0

k , f̂T (x
e
k))|{x

e
i}
⇤

def
=

1

N

NX

k=1

Err(x
e
k)
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The Bias-Variance Decomposition for Err(x
ek
)

...
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Special Case for the Linear Regression Model

Linear model y
e
= X� + e

e...
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