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Outline of Statistical Signal Processing
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Discrete-Time Stochastic Processes

Autoregressive (AR), Moving-Average (MA), ARMA Models
Discrete Wiener Filtering

Linear Prediction

Levinson—-Durbin Recursion

Spectrum Estimation

Frequency Estimation
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1.1 Random Processes and Properties

1 Discrete-Time Stochastic Processes
1.2 Filtering a Random Process

Appendix: Detailed Derivations

Stochastic/Random Processes

@ To describe the time evolution of a statistical phenomenon
according to probabilistic laws.

Random Process
A random process (r.p.) X = (X; : t € T) is an indexed collection
of random variables on the same probability space (2, F,P).

@ When T = R, cts-time r.p.; when T = Z, discrete-time r.p.

@ Interpretations:
o Xi(w) is a function on T x Q.
o For each t fixed, X;(w) is a function on Q (“random variable").

o For each w fixed, X;(w) is a function on T (“sample path”,
"realization of a random process”).
3/40
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Characterizing a Random Process

Examples: speech signals, temperature, stock price.
T generalized to a higher dimension: image, video.
T generalized to a topological structure: random graph.

(]

A random process can be completely characterized by joint
cumulative distribution functions (CDFs) (or PDFs if exist) of all
possible subsets of the r.v.s in it:

FX,n(X17 t1;... » Xny tn) = ]P)[th S X1y 7th S Xn]-

Mean-value function: px(t) = E[X¢].
Correlation function: Rx(s,t) = E[XsX¢].
Covariance function: Cx(s, t) = Cov(Xs, X¢).
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Properties of a Random Process

@ Def: Arp. (X;:teT)is Gaussian if rv.s. Xp:teT
comprising the process are jointly Gaussian.

@ Strict Stationarity: X = (X; : t € T) is stationary if for any

ti,...,tp and s in T, vectors (X, ..., Xt,) and
(Xty+s, - - - » Xt,+s) have the same distribution, i.e.,
Fx n(x1,t1;. .. Xn, tn) = Fx n(X1, t1 + ;... Xn, th +°5)

@ Wide-Sense Stationarity:
o E[X:] = pux, Vt € T. (Not a function of t.)
° E[thth] = Rx(tl — t2,0) = Rx(fl — tz), Vti,t, € T.
(Dependent only on time difference.)

@ In this course, we will focus on discrete-time stochastic process
{uln]} ={...,u[n—1],u[n], u[n+1],...} defined/observed at
discrete and uniformly-spaced time instants.
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Parametric Signal Modeling

@ Question: How to use only a few parameters to describe a
process?

Determine (1) a model, and then (2) the model parameters.

This part of the course studies the signal modeling
(including models, applicable conditions, how to determine the
parameters, etc.)

Dr. Chau-Wai Wong ECE792-41 Statistical SP & ML 6 /40



1 Discrete-Time Stochastic Processes 1.1 Random Processes and Properties
Appendix: Detailed Derivations 1.2 Filtering a Random Process

Partial Characterization by 1st and 2nd moments
It is often difficult to determine and efficiently describe the joint
CDF/PDF for a general random process.

As a compromise, we consider partial characterization of the
process by specifying its 1st and 2nd moments.

We define the following functions for a complex-valued
discrete-time random process {u[n]}:

e mean-value function: m{n] =E[u[n]] , n€ Z
e autocorrelation function: r(n,n— k) = E[u[n]u*[n — K]]

@ autocovariance function:
c(n,n—k) = E[(u[n] — m[n])(u[n — k] — m[n — k])*}

Without loss of generality, we often consider zero-mean random process
E [u[n]] = 0 V¥n, since we can always subtract the mean in preprocessing.
Now the autocorrelation and autocovariance functions become identical.
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Wide-Sense Stationary (w.s.s.)

Wide-Sense Stationarity

If Yn, m[n] = m and r(n,n— k) = r(k) (or c(n, n— k) = c(k)),
then the sequence u[n] is said to be wide-sense stationary (w.s.s.),
or also called stationary to the second order.

@ The strict stationarity requires joint probability distribution
functions to be invariant to time shifts.

@ The partial characterization using 1st and 2nd moments offers
two important advantages:

@ reflect practical measurements;

@ well suited for linear operations of random processes.
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Ensemble Average vs. Time Average

@ Statistical expectation E(-) as an ensemble average: take
average across (different realizations of ) the process, or over
the sample space.

o Time average: take average along the process or the time.

This is what we can rather easily measure from one realization
of the random process.

Question: Are these two average types the same?
Answer: No. (Examples from a random processes class)
Consider two special cases of correlations between signal samples:
Q u[n],uln—1],--- iid.
@ u[n] =u[n—1]=--- all sample points are exact copies
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Mean Ergodicity

For a w.s.s. process, we may use the time average

m(N )— N Zn 0 U[”]
to estimate the mean m.

e M(N) is an unbiased estimator of the mean of the process.
~E[m(N)]=m VN.

e Question: How much does M(N) from one observation deviate from
the true mean?

Mean Ergodic

|

A w.s.s. process {u[n]} is mean ergodic if M(N) == m, i.e
limy_so0 B [|A(N) — m|?] = 0.
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Mean Ergodicity

Question: Under what condition will mean ergodic be satisfied?

E [|M(N) — m|?] = E[(M(N) — m)(i(N) — m)*]

= (nece& suff.) ||m/\/ﬁOO N 25_7,\#1(1 — %)C(f) =0, or
imy_soo & SV o c(f) =0.

A sufficient condition for mean ergodicity is that {u[n]} is
asymptotically uncorrelated, i.e., limy_, c(¢) = 0.
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Correlation Ergodicity

Similarly, let an autocorrelation estimator be

1 N—-1
Pk, N) = > uln]ut[n— K]
n=0

The w.s.s. process {u[n]} is said to be correlation ergodic if the
mean squared difference between r(k) and 7(k, N) approaches zero
as N — oo.
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Correlation Matrix

Given an observation vector u[n] of a w.s.s. process, the
correlation matrix R is defined as R £ E [u[n]u"[n]]

where H denotes Hermitian transposition (i.e., conjugate transpose).

Z{Z]_ . Each entry in R is
uln] £ | . v [Rlij = E[uln—i]u*[n—j]] = r(j — i)
.u[nfMJrl] 0<i,j<M-1)
r(0) r(l) - - r(M=1)
r(—1) r(0) r(1) :
Thus R =
(-M+2) ) (1)
r(—M+1) r(0)
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Properties of R

O R is Hermitian, i.e., R" =R

Proof

@ R is Toeplitz.

A matrix is said to be Toeplitz if all elements in the main diagonal are
identical, and the elements in any other diagonal parallel to the main
diagonal are identical.

R Toeplitz < the w.s.s. property.
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Properties of R

© R is non-negative definite , i.e., x"Rx > 0, Vx
Proof

e eigenvalues of a Hermitian matrix are real.
(similar relation in FT: real in one domain ~ conjugate symmetric in
the other)

e eigenvalues of a non-negative definite matrix are non-negative.
Proof
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Properties of R

1.1 Random Processes and Properties
1.2 Filtering a Random Process

uln— M + 1]
Q uBn = , i.e., reversely ordering uln,
uln — 1]
uln]

=RT
r(M=1) - - r(0)
Dr. Chau-Wai Wong
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1.2 Filtering a Random Process
Properties of R

© Recursive relations: correlation matrix for (M + 1) x 1 u[n]:

W(n-=m)

ot W o ) = [ M (] ]
H‘:cz) N

MMy QM- Y I*Ll;)

_ W]
N O N S [RM ) B liL’LMUHJ:]
"~ Ru Gl J

MNo)
Where o[ MW, PBE_THWD
I‘*'[,M) )
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Example 1: Complex Sinusoidal Signal

x[n] = Aexp [j(2mfon + ¢)] where A and f are real constant, ¢ ~
uniform distribution over [0, 27) (i.e., random phase)

Relx (\3]

=0
. -
~ ~ s
SRS ~
< . -
\ M .
N N

E[x[n]] =7

E [x[n]x*[n — k]] =7

Is x[n] is w.s.s.?
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Example 2: Complex Sinusoidal Signal with Noise

Let y[n] = x[n] + w[n] where w][n] is white Gaussian noise
uncorrelated to x[n] , w[n] ~ N(0, o)

2 k =
Note: for white noise, E [w[n]w*[n — k|| = {g 0
ry(k) = Elylnly*[n — k]] =7

R, =7

Rank of Correlation Matrices Ry, R,,, R, =7
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1.2 Filtering a Random Process

Power Spectral Density (a.k.a. Power Spectrum)

Power spectral density (p.s.d.) of a w.s.s. process {x[n]}

o0

Px(w) £ DTFT[n(K)]= Y_ n(k)e "
r(k) = DTFT*l[PX(w)]:%/7T Px(w)ef“’kdw

—T

The p.s.d. provides frequency domain description of the 2nd-order
moment of the process (may also be defined as a function of f: w = 27f)

The power spectrum in terms of ZT:
Px(z) = ZT[n (k)] = 202 oo x(k)z7*

Physical meaning of p.s.d.: describes how the signal power of a random
process is distributed as a function of frequency.
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Properties of Power Spectral Density

@ r.(k) is conjugate symmetric: ri(k) = r}(—k)
Px(w) is real valued: Px(w) = Px(w); Px(z) = Px(1/z*)

@ For w.s.s. process, Px(w) > 0 (nonnegative)

@ For real-valued random process: ry(k) is real-valued and even
symmetric

= Px(w) is real and even symmetric, i.e.,
Px(w) = Px(—w); Px(z) = Px(z")

@ The power of a zero-mean w.s.s. random process is proportional to
the area under the p.s.d. curve over one period 2,
. 2
e, E[Ix[n]]?] = r(0) = o= 5" Px(w)dw

Proof: note r,(0) = IDTFT of Px(w) at k=0
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(6) Filtering a Random Process

NSS. XN l 303

P‘.oc,e,ss (/V\'l —

Stoble LTL fivker
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Filtering a Random Process

NSS. XIW] 303

‘PM(‘,E,$S B s l ’\—(/“'3 —

$toble 1,T1:§>.L+e,(

er’\) u r\{x( e

»j—\ Her H'U"

ted= AXT % Kk = i RCLT b CRtL)

=y ()

detorasya ste autscoire lw\’ﬂm
oj— ]D'H'W ‘s .‘MFM&O.N_SFW/
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Filtering a Random Process

S5 XN 35‘”3
’(V)\)M(‘,EAS j l (/“‘3

stoble LTZ :{—\L-\-e,(

In terms of ZT:
Py(z) = Px(z)H(z)H*(1/z")

= Py (w) = Px(w)H(w)H*(w) = Px(w)|H(w)[?

When h[n] is real, H*(z*) = H(z)
= Py(z) = Px(z)H(z)H(1/z)
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Interpretation of p.s.d.

lwwgge

If we choose H(z) to be an ideal bandpass filter with
very narrow bandwidth around any wg, and measure 0
the output power: 0 Wo

E [[y[n]l?] = r(0) = 55 [2 Py (w)dw

= & 1T Px(w) [ H(w)Pdw = & [0 Px(w) 1+ dw
= 3 Px(wo)- B >0

- Px(wo) = E [ly[n]?] - %, and Px(w) >0 Vw

i.e., p.s.d. is non-negative, and can be measured via power of {y[n]}.

% Px(w) can be viewed as a density function describing how the power
in x[n] varies with frequency. The above BPF operation also provides a
way to measure it by BPF.
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Summary: Review of Discrete-Time Random Process

@ An “ensemble” of sequences, where each outcome of the sample
space corresponds to a discrete-time sequence

@ A general and complete way to characterize a random process:
through joint p.d.f.

© w.s.s process: can be characterized by 1st and 2nd moments
(mean, autocorrelation)

o These moments are ensemble averages; E [x[n]],
r(k) = E[x[n]x*[n — K]]
o Time average is easier to obtain (from just 1 observed sequence)

e Mean ergodicity and autocorrelation ergodicity:
correlation function should be asymptotically decay, i.e.,
uncorrelated between samples that are far apart.
= the time average over large number of samples converges to
the ensemble average in mean-square sense.
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Characterization of w.s.s. Process through Correlation
Matrix and p.s.d.

@ Define a vector on signal samples (note the indexing order):
uln] = [u(n), u(n = 1), .. u(n— M+ 1)]7
@ Take expectation on the outer product:

r(O) r(l) r(M _ 1)
REE[u ) = | D O
r(—M.|_1) r(O)

© Correlation function of w.s.s. process is a one-variable
deterministic sequence = take DTFT(r[k]) to get p.s.d.
We can take DTFT on one sequence from the sample space of random
process; different outcomes of the process will give different DTFT
results; p.s.d. describes the statistical power distribution of the random
process in spectrum domain.
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Properties of Correlation Matrix and p.s.d.

@ Properties of correlation matrix:

o Toeplitz (by w.s.s.)

e Hermitian (by conjugate symmetry of r[k]);

e non-negative definite
Note: if we reversely order the sample vector, the corresponding
correlation matrix will be transposed. This is the convention used in
Hayes book (i.e. the sample is ordered from n — M + 1 to n), while
Haykin's book uses ordering of n, n—1,...ton— M+ 1.

© Properties of p.s.d.:

o real-valued (by conjugate symmetry of correlation function);
e non-negative (by non-negative definiteness of R matrix)
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Filtering a Random Process

@ Each specific realization of the random process is just a
discrete-time signal that can be filtered in the way we've studied
in undergrad DSP.

@ The ensemble of the filtering output is a random process.
What can we say about the properties of this random process
given the input process and the filter?

© The results will help us further study such an important class of
random processes that are generated by filtering a noise process
by discrete-time linear filter with rational transfer function. Many
discrete-time random processes encountered in practice can be
well approximated by such a rational transfer function model:
ARMA, AR, MA (see §l1.1.2)
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Mean Ergodicity

A w.s.s. process {u[n]} is mean ergodic in the mean square error sense if
iMoo B [|[m — M(N)|?] =0

Question: under what condition will this be satisfied?

el i -m1*) = Elids wa-n ]
= e E{ 15—y

o N-L N- ]
(&
= %_Dki E[ (urm-e(eny)(nge-Elured) )
Nt -\
= _\E' K=o %ﬁ LU\"K) K=o 20— Nl
=S L !

2
o (=) ¢l NL

nN~K=o
a‘\*nl—o —

ActUL). 5Nt terms o

Therefe , Ha hecessony and sufficed condition for ol §

15 be memwmn aﬁad}r/ T MSE sense- 1S

I

2 7
e BNy = [ ¢
N/ 0~ KK
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Properties of R

R is Hermitian, i.e., R =R
Proof r(k) £ E [u[n]u*[n — k]] = (E[u[n — K]u*[n]])* = [r(=k)]*
Bring into the above R, we have R¥ =R

R is Toeplitz.

A matrix is said to be Toeplitz if all elements in the main diagonal
are identical, and the elements in any other diagonal parallel to the
main diagonal are identical.

R Toeplitz < the w.s.s. property.
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Properties of R

R is non-negative definite , i.e., x"Rx >0, Vx

Proof
Recall R £ E [u[n]u"[n]]. Now given Vx (deterministic):

xMRx = [x"u[n]u[n]x] = B | (x"u[n])(x"uln])*| =

|x| scalar

E [|x"u[n]]?] >0

@ eigenvalues of a Hermitian matrix are real.
(similar relation in FT analysis: real in one domain becomes
conjugate symmetric in another)

@ eigenvalues of a non-negative definite matrix are non-negative.

Proof choose x = R'’s eigenvector v s.t. Rv = Ay,
VARy = vAv = AWy = M\v[2>0= A1 >0

Dr. Chau-Wai Wong ECE792-41 Statistical SP & ML 33/40



1 Discrete-Time Stochastic Processes
Appendix: Detailed Derivations

Properties of R

Recursive relations: correlation matrix for (M + 1) x 1 u[n]:

oud W e I = [ M n] ]

Wn-m)

[ wmg
er YT [RM (rBY J B [WMJ
" R (iB)T MNo)

Where N[ MO, Eﬁz[rﬁm

\
t
¢

P*'[,M) My
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(4) Example: Complex Sinusoidal Signal

x[n] = Aexp [j(27fon + ¢)] where A and fy are real constant, ¢ ~
uniform distribution over [0, 27) (i.e., random phase)

Re,[,)(("-]] =0
We have: /E”\\ L’
E [x[n]] = 0 Vn \ ~ o
A=T/y

E [x[n]x*[n — K]]
— E[Aexp[j(2nfon + 0)] - Aexp[—j(2nfon — 2mfok + )]
= A2 . explj(27fok)]

. x[n] is zero-mean w.s.s. with ry(k) = A% exp(j27fyk).
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Example: Complex Sinusoidal Signal with Noise

Let y[n] = x[n] + w[n] where w][n] is white Gaussian noise
uncorrelated to x[n] , w[n] ~ N(0, c?)

o2 k=0

Note: for white noise, E [w[n]w*[n — k]| = {0

ry(k) = E[y[n]ly*[n — ]|
= E[(x[n] + w[n])(x*[n — k] + w*[n — K])]
= re[k] + rw[k] (. E[x[]w[]] = 0 uncorrelated and w[-] zero mean)
= A2 explj2nfok] + o25[K]

1
e_.j27rf0

. Ry=R,+Ry = A2@H + 621, where e— e—j4fy
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Rank of Correlation Matrix

Questions:

Th Kk of R 1 (.- only one independent row/column, corresponding
e rank of R, =

to only one frequency component fy in the signal)

The rank of R, = M

The rank of R, = M
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Filtering a Random Process
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Filtering a Random Process
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Filtering a Random Process
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