3 Discrete Wiener Filter
Appendix: Detailed Derivations

Statistical Signal Processing
3. Discrete Wiener Filtering

Dr. Chau-Wai Wong

Electrical & Computer Engineering
North Carolina State University

Readings: Haykin 4th Ed. Chapter 2, Hayes Chapter 7

Contact: chauwai.wong@ncsu.edu. Updated: October 26, 2020.
Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides

developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland.
Dr. Chau-Wai Wong ECE792-41 Statistical SP & ML 1/24



3.0 Preliminaries

3 Discrete Wiener Filter 3.1 Background
Appendix: Detailed Derivations 3.2 FIR Wiener Filter for w.s.s. Processes
3.3 Example

Preliminaries

e Why prefer FIR filters over [IR?
= FIR is inherently stable.
e Why consider complex signals?

Baseband representation is complex valued for narrow-band
messages modulated at a carrier frequency.

Corresponding filters are also in complex form.

[\
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uln] = w[n] + jug[n]

e uy[n]: in-phase component .

ug[n]: quadrature component
the two parts can be amplitude modulated by cos2nf.t and sin 2w f.t.
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Preliminaries

@ In many communication and signal processing applications,
messages are modulated onto a carrier wave. The bandwidth
of message is usually much smaller than the carrier frequency
= i.e., the signal modulated is “narrow-band”.

@ It is convenient to analyze in the baseband form to remove
the effect of the carrier wave by translating signal down in
frequency yet fully preserve the information in the message.

@ The baseband signal so obtained is complex in general.
uln] = u[n] + jug[n]

@ Accordingly, the filters developed for the applications are also
in complex form to preserve the mathematical formulations
and elegant structures of the complex signal in the
applications.
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(1) General Problem

(Ref: Hayes §7.1)
Di?‘ﬁiﬁt] dony

observed- x cn ) hond etn)
S\ng\M\, ostimateo S%M emMut- s?grw\)x,

Want to process x[n] to minimize the difference between the estimate
and the desired signal in some sense:

A major class of estimation (for simplicity & analytic tractability) is to
use linear combinations of x[n] (i.e. via linear filter).

When x[n] and d[n] are from two w.s.s. random processes, we often
choose to minimize the mean-square error as the performance index.

min, J £ E [|e[n]]?] = E [|d[n] — d[n][?
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(2) Categories of Problems under the General Setup

Q Filtering
@ Smoothing
© Prediction

© Deconvolution
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Wiener Problems: Filtering & Smoothing

o Filtering

The classic problem considered by Wiener

x[n] is a noisy version of d[n]: x[n] = d[n] + v[n]

The goal is to estimate the true d[n] using a causal filter
(i.e., from the current and post values of x[n])

e The causal requirement allows for filtering on the fly

@ Smoothing

e Similar to the filtering problem, except the filter is allowed to
be non-causal (i.e., all the x[n] data is available)
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Wiener Problems: Prediction & Deconvolution

@ Prediction

o The causal filtering problem with d[n] = x[n + 1],
i.e., the Wiener filter becomes a linear predictor to predict
x[n + 1] in terms of the linear combination of the previous
value x[n], x[n —1],,...

@ Deconvolution

o To estimate d[n| from its filtered (and noisy) version
x[n] = d[n] + gln] + vIn]

o If g[n] is also unknown = blind deconvolution.
We may iteratively solve for both unknowns
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FIR Wiener Filter for w.s.s. processes

Design an FIR Wiener filter for jointly w.s.s. processes {x[n]} and {d[n]}:
W(z) = 1" axz* (where ax can be complex valued)
d[n] = ZQ/’:_O:L akx[n — k] = a" x[n] (in vector form)
= e[n] = d[n] — d[n] = d[n] — 3 5" ax[n — K]
—_———
d[n]=aT x[n]

By summation-of-scalar:
J=ellewa|"] = E[ emm) e¥em)]
— N M- ot T sl M * +
= el ldeal) - E[dwm] g aﬁx*[w—mj - E{d'T0) 3 extnv1] +1:L£’ =, MM XD 5

Mt M=t Mol A 4
= €[] ) S eldm X ove] — S ae e[ ¥ nxo] 4 > £ 00D r]
Py (L&)
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FIR Wiener Filter: J in matrix-vector form

J=E [(d[n] — a"x[n])(d*[n] - x"[n]2*)]
—E Ud[n”2] _QHB* —BTQ-FQHRTQ

where
el E [x{n]d" ]

(e}
Il
1%}

Il

x[n] = : :
n— M1 E [x[n — M + 1]d*[]]

o E [|d[n][?]: 2 for zero-mean random process
e a""R7 a: represent E [ng[n]gH[n]g*} = a'Ra*
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Perfect Square

@ If R is positive definite, R™! exists and is positive definite.

o (Rg*—B)HRfl(RQ B) ( TRH 7H)(é*_R71B)
_ ,TRH* H *— a3 T Hp-1
=a'Rfa" — pHa* —aTRY R; P+P R™p

Thus we can write J(a) in the form of perfect square:

Ja)= E[d[]P]-p"R'p + (Ra*-p)"R7}(Ra* - p)

Not a function of a; Represent Ji,. >0 except being zero if Ra*—p=0
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Perfect Square
Jw)

J(a) represents the error performance surface:
Qo

forhe2

convex and has unique minimum at Ra* = p

&

Thus the necessary and sufficient condition for determining the
optimal linear estimator (linear filter) that minimizes MSE is

Ra*—p=0=Ra"=p

This equation is known as the Normal Equation.
A FIR filter with such coefficients is called a FIR Wiener filter.
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Perfect Square

Ra*=p a5 = R!p if R is not singular
(which often holds due to noise)

When {x[n]} and {d[n]} are jointly w.s.s.
(i.e., crosscorrelation depends only on time difference)

T N©) !35 (§) T 0% 7 Ty o)
Rty Puls) 9 = '
' N \ ‘c
My (M=) C . alu_‘ rd\((M-\)
P«T '8 P—X—

This is also known as the Wiener-Hopf equation (the discrete-time

counterpart of the continuous Wiener-Hopf integral equations)
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Principle of Orthogonality

Note: to minimize a real-valued func. f(z,z") that's analytic (differentiable

everywhere) in z and z*, set the derivative of f w.r.t. either z or z* to zero.
o Necessary condition for minimum J(a): (nece.&suff. for convex J)
%J:Oforkzo 1,...,M—-1.

= %Eelne [n]]—E[e[nlaa (d"[n) = X J15" 3 In— )|
= E[efn] - (~x[n — k])] = 0

Principal of Orthogonality
E [eopt[n]x*[n — k]] =0 for k=0,...,M — 1.

. . o M—1 _opt .
The optimal error signal egpe[n] = d[n] - _Zl —0 2 x[n.—j]. and
each of the M samples of x[n] that participated in the filtering are
statistically uncorrelated (i.e., orthogonal in a statistical sense)
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Principle of Orthogonality: Geometric View

Grepwek

lW.PT@;\-oJ\m dm Analogy:

r.v. = vector;

E(XY) = inner product of vectors

= The optimal d[n] is the
o (inesr Comihtnatio-
8 Xn] - XOMHT
sk ok weludas Bt aphwtl dLM spanned by {x[n],...,x[n— M+ 1]}
in a statistical sense.

projection of d[n] onto the subspace

The vector form: E [x[n]ex:[n]] =

This is true for any linear combination of x[n] and for FIR & IIR:

E | dope 1] eopeln]]| = 0
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Minimum Mean Square Error

Recall the perfect square form of J:
J(a) = E [|d[n]]’] - p""R™'p+(Ra* — p)"R™(Ra" — p)

. 2 2
Imin =05 —a,p" =04 —

Also recall d[n] = dopt[n] + €opt[n]. Since dopt[n] and expe[n] are
uncorrelated by the principle of orthogonality, the variance is

02 = Var(dopt[n]) + Jmin

. Var(dopt[n]) = p'R™1p

= QS’B* = BHQZ = BTQO real and scalar
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Example and Exercise

dg?ﬂl L) Ny wmy

JIALS! dona A Y 0] D
— —
- @ 5 &

e [

0. 3458 0.9458 Reny
SV W w2 istmion pls Nowr T design o
;wem R W2 U Z-‘t INrenerfitre~ta
(O3, real valaeed. ) best esFimate §{dln).

(beu-vatut&)
2 2 wea e vt Tesert—>
We have 07 = 0.2], 03 =o.(, Tal Vi, hdlX (mwm&ﬁgm@sxs)

e What kind of process is {x[n]}?
e What is the correlation matrix of the channel output?
e What is the cross-correlation vector?

oews =7 wr =7 Jnin="
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Another Perspective (in terms of the gradient)

Theorem: If f(z,z*) is a real-valued function of complex vectors z and z*,
then the vector pointing in the direction of the maximum rate of the change of
fis Vz=f(z,2"), which is a vector of the derivative of f() w.r.t. each entry in
the vector z*.
Corollary: Stationary points of f(z,z") are the solutions to V= f(z,z") = 0.

| a"z | ZMa| ZMAz

Complex gradient of a
2 Q* ATZ* — (Az)*
V= 0 a Az

complex function: V,

Using the above table, we have V,-J = —p* + R7 a.

For optimal solution: V-J = aa?J =0

= R7a = p*, or Ra* = p, the Normal Equation. .". a},, = R™'p

[Review on matrix & optimization: Hayes 2.3; Haykin (4th) Appendices A,B,C]
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Review: differentiating complex functions and vectors

<> DW ﬂk.bLlﬁi_ 51 ’d EQ()\_W W\M o
9,\_‘ w QF‘lst T'_=> ;V\ D«lk- &n@(‘)\'\\s:;
530 2y o Ay —>o

Recoll_: ) ts wlg,téu(:.ud}ﬁmm‘alhb&.um\f where) on (‘PJTMB \j—
F@r= Wk gy + LIey) TS ondTikons and. sodishy deu[—krwmw
ondition © 24— DU g ok QU

ERS A Y T ox

@eg. 4= 3 = (3= WY ) ¢ 10

FH=3%= -1y
—= DOES NOT gajﬁSj"\/ kac)\_\{._ \Q;QJMOJW\, .
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Differentiating complex functions: More details
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O  Wher e {2
din] = —o34s3 dia-14 Y 1] = D =[x ousps
X(n) = 09esgx(n-0t dTn) = RaB)= “omas

{
HUY= BB ) = Trrgmr” “ofsis

— el B
(- o13"-0.83 o e ad™

e X1} is on AR() process of
XL — ol XTn-(] — 0.8 xTn-2]) = U ln]
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B Obtointha cross comelotion yecks— P F[&C )(MM )J
K-t
E[(XU\}- o .ﬁ@&xﬁwﬂ) (C(OERAC) )]
‘hxm\“' 07453' E) = | - 034—&3 e
Lo | — 04729 = 0.5271
nd ety Eldea ucwt)]) = M0 — 09488 10 = — 0.4488
. P= [ 08271
- [—o-mszj
® optmm)L we»akxs are

WN,= R'P = [Miéo J

- 0.7883
J i) = 04488 — [ofad o+ 087141 £ WM + 11 (W RT)
= Jywin= 01879

E[dvawod]

I
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