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Preliminaries

• Why prefer FIR filters over IIR?

⇒ FIR is inherently stable.

• Why consider complex signals?

Baseband representation is complex valued for narrow-band
messages modulated at a carrier frequency.

Corresponding filters are also in complex form.

u[n] = uI [n] + juQ [n]

• uI [n]: in-phase component •
uQ [n]: quadrature component

the two parts can be amplitude modulated by cos 2πfct and sin 2πfct.
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Preliminaries

In many communication and signal processing applications,
messages are modulated onto a carrier wave. The bandwidth
of message is usually much smaller than the carrier frequency
⇒ i.e., the signal modulated is “narrow-band”.

It is convenient to analyze in the baseband form to remove
the effect of the carrier wave by translating signal down in
frequency yet fully preserve the information in the message.

The baseband signal so obtained is complex in general.
u[n] = uI [n] + juQ [n]

Accordingly, the filters developed for the applications are also
in complex form to preserve the mathematical formulations
and elegant structures of the complex signal in the
applications.
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(1) General Problem

(Ref: Hayes §7.1)

Want to process x [n] to minimize the difference between the estimate
and the desired signal in some sense:

A major class of estimation (for simplicity & analytic tractability) is to
use linear combinations of x [n] (i.e. via linear filter).

When x [n] and d [n] are from two w.s.s. random processes, we often
choose to minimize the mean-square error as the performance index.

minw J , E
[
|e[n]|2

]
= E

[
|d [n]− d̂ [n]|2

]
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(2) Categories of Problems under the General Setup

1 Filtering

2 Smoothing

3 Prediction

4 Deconvolution
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Wiener Problems: Filtering & Smoothing

Filtering

The classic problem considered by Wiener
x [n] is a noisy version of d [n]: x [n] = d [n] + v [n]
The goal is to estimate the true d [n] using a causal filter
(i.e., from the current and post values of x [n])
The causal requirement allows for filtering on the fly

Smoothing

Similar to the filtering problem, except the filter is allowed to
be non-causal (i.e., all the x [n] data is available)
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Wiener Problems: Prediction & Deconvolution

Prediction

The causal filtering problem with d [n] = x [n + 1],
i.e., the Wiener filter becomes a linear predictor to predict
x [n + 1] in terms of the linear combination of the previous
value x [n], x [n − 1], , . . .

Deconvolution

To estimate d [n] from its filtered (and noisy) version
x [n] = d [n] ∗ g [n] + v [n]

If g [n] is also unknown ⇒ blind deconvolution.
We may iteratively solve for both unknowns
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FIR Wiener Filter for w.s.s. processes

Design an FIR Wiener filter for jointly w.s.s. processes {x [n]} and {d [n]}:

W (z) =
∑M−1

k=0 akz
−k (where ak can be complex valued)

d̂ [n] =
∑M−1

k=0 akx [n − k] = aT x [n] (in vector form)

⇒ e[n] = d [n]− d̂ [n] = d [n]−
∑M−1

k=0 akx [n − k]︸ ︷︷ ︸
d̂ [n]=aT x[n]

By summation-of-scalar:
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FIR Wiener Filter: J in matrix-vector form

J = E
[
(d [n]− aT x [n])(d∗[n]− xH [n]a∗)

]
= E

[
|d [n]|2

]
− aHp∗ − pTa + aHRTa

where

x [n] =


x [n]

x [n − 1]
...

x [n −M + 1

, p =

 E [x [n]d∗[n]]
...

E [x [n −M + 1]d∗[n]]

, a =

 a0
...

aM−1

.

E
[
|d [n]|2

]
: σ2 for zero-mean random process

aHRTa: represent E
[
aT x [n]xH [n]a∗

]
= aTRa∗
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Perfect Square

1 If R is positive definite, R−1 exists and is positive definite.

2 (Ra∗ − p)HR−1(Ra∗ − p) = (aTRH − pH)(a∗ − R−1p)

= aTRHa∗ − pHa∗ − aT RHR−1︸ ︷︷ ︸
=I

p + pHR−1p

Thus we can write J(a) in the form of perfect square:

J(a) = E
[
|d [n]|2

]
− pHR−1p︸ ︷︷ ︸

Not a function of a; Represent Jmin.

+ (Ra∗ − p)HR−1(Ra∗ − p)︸ ︷︷ ︸
>0 except being zero if Ra∗−p=0
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Perfect Square

J(a) represents the error performance surface:

convex and has unique minimum at Ra∗ = p

Thus the necessary and sufficient condition for determining the
optimal linear estimator (linear filter) that minimizes MSE is

Ra∗ − p = 0⇒ Ra∗ = p

This equation is known as the Normal Equation.
A FIR filter with such coefficients is called a FIR Wiener filter.
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Perfect Square

Ra∗ = p ∴ a∗opt = R−1p if R is not singular
(which often holds due to noise)

When {x [n]} and {d [n]} are jointly w.s.s.
(i.e., crosscorrelation depends only on time difference)

This is also known as the Wiener-Hopf equation (the discrete-time

counterpart of the continuous Wiener-Hopf integral equations)
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Principle of Orthogonality

Note: to minimize a real-valued func. f (z , z∗) that’s analytic (differentiable

everywhere) in z and z∗, set the derivative of f w.r.t. either z or z∗ to zero.

• Necessary condition for minimum J(a): (nece.&suff. for convex J)

∂
∂a∗k

J = 0 for k = 0, 1, . . . ,M − 1.

⇒ ∂
∂a∗k

E [e[n]e∗[n]] = E
[
e[n] ∂

∂a∗k
(d∗[n]−

∑M−1
j=0 a∗j x

∗[n − j ])
]

= E [e[n] · (−x∗[n − k])] = 0

Principal of Orthogonality

E [eopt[n]x∗[n − k]] = 0 for k = 0, . . . ,M − 1.

The optimal error signal eopt[n] = d [n]−
∑M−1

j=0 aoptj x [n − j ] and
each of the M samples of x [n] that participated in the filtering are
statistically uncorrelated (i.e., orthogonal in a statistical sense)
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Principle of Orthogonality: Geometric View

Analogy:
r.v. ⇒ vector;
E(XY) ⇒ inner product of vectors

⇒ The optimal d̂ [n] is the

projection of d [n] onto the subspace

spanned by {x [n], . . . , x [n−M + 1]}
in a statistical sense.

The vector form: E
[
x [n]e∗opt[n]

]
= 0.

This is true for any linear combination of x [n] and for FIR & IIR:

E
[
d̂opt[n]eopt[n]

]
= 0
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Minimum Mean Square Error

Recall the perfect square form of J:

J(a) = E
[
|d [n]|2

]
− pHR−1p︸ ︷︷ ︸+ (Ra∗ − p)HR−1(Ra∗ − p)︸ ︷︷ ︸

∴ Jmin = σ2d − aHo p
∗ = σ2d − pHR−1p

Also recall d [n] = d̂opt[n] + eopt[n]. Since d̂opt[n] and eopt[n] are

uncorrelated by the principle of orthogonality, the variance is

σ2d = Var(d̂opt[n]) + Jmin

∴ Var(d̂opt[n]) = pHR−1p

= aH0 p
∗ = pHa∗o = pTao real and scalar

Dr. Chau-Wai Wong ECE792-41 Statistical SP & ML 15 / 24



3 Discrete Wiener Filter
Appendix: Detailed Derivations

3.0 Preliminaries
3.1 Background
3.2 FIR Wiener Filter for w.s.s. Processes
3.3 Example

Example and Exercise

• What kind of process is {x [n]}?
• What is the correlation matrix of the channel output?
• What is the cross-correlation vector?

• w1 =? w2 =? Jmin =?
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Another Perspective (in terms of the gradient)

Theorem: If f (z , z∗) is a real-valued function of complex vectors z and z∗,
then the vector pointing in the direction of the maximum rate of the change of
f is ∇z∗ f (z , z∗), which is a vector of the derivative of f () w.r.t. each entry in
the vector z∗.

Corollary: Stationary points of f (z , z∗) are the solutions to ∇z∗ f (z , z∗) = 0.

Complex gradient of a

complex function:

aHz zHa zHAz

∇z a∗ 0 AT z∗ = (Az)∗

∇z∗ 0 a Az

Using the above table, we have ∇a∗J = −p∗ + RTa.

For optimal solution: ∇a∗J = ∂
∂a∗ J = 0

⇒ RTa = p∗, or Ra∗ = p, the Normal Equation. ∴ a∗opt = R−1p

[Review on matrix & optimization: Hayes 2.3; Haykin (4th) Appendices A,B,C]

Dr. Chau-Wai Wong ECE792-41 Statistical SP & ML 17 / 24



3 Discrete Wiener Filter
Appendix: Detailed Derivations

3.0 Preliminaries
3.1 Background
3.2 FIR Wiener Filter for w.s.s. Processes
3.3 Example

Review: differentiating complex functions and vectors
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Differentiating complex functions: More details
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