Statistical Signal Processing 5. The Levinson–Durbin Recursion

Dr. Chau-Wai Wong

Electrical & Computer Engineering North Carolina State University

Readings: Hayes §5.2; Haykin 4th Ed. §3.3

Contact: chauwai.wong@ncsu.edu. Updated: November 4, 2020. Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland.

Dr. Chau-Wai Wong [ECE792-41 Statistical SP & ML](#page-20-0) 1/21

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Complexity in Solving Linear Prediction

Recall Augmented Normal Equations for linear prediction:

FLP	$\mathbf{R}_{M+1} \underline{a}_M = \begin{bmatrix} P_M \\ \underline{0} \end{bmatrix}$	\underline{BLP}	$\mathbf{R}_{M+1} \underline{a}_M^{B^*} = \begin{bmatrix} \underline{0} \\ P_M \end{bmatrix}$
--------------	---	-------------------	---

As \mathbf{R}_{M+1} is usually non-singular, a_M may be obtained by inverting \mathbf{R}_{M+1} , or Gaussian elimination for solving equation array:

 \Rightarrow Computational complexity $O(M^3)$.

Note that these two equations are equivalent. Why?

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Exploiting Structures in Matrix and LP Problem

Complexity in solving a general linear equation array:

- Method 1: invert the matrix, e.g., compute determinant of \mathbf{R}_{M+1} matrix and the adjacency matrices \Rightarrow matrix inversion has $O(M^3)$ complexity
- Method 2: use Gaussian elimination
	- \Rightarrow approximately $M^3/3$ multiplication and division

By exploring the Toeplitz structure of the matrix, Levinson–Durbin recursion can reduce complexity to $O(M^2)$

- *M* steps of order recursion, each step has a linear complexity w.r.t. intermediate order
- Memory use: Gaussian elimination $O(M^2)$ for the matrix, vs. Levinson-Durbin $O(M)$ for the autocorrelation vector and model parameter vector.

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Levinson–Durbin Recursion

The Levinson–Durbin recursion is an order-recursion to efficiently solve linear systems with Toeplitz matrices, e.g., Augmented N.E. For M steps of order recursion, each step has a linear complexity w.r.t. intermediate order.

Goal: To solve \underline{a}_m from the Augmented N.E., $\mathbf{R}_{m+1}\underline{a}_m = \begin{bmatrix} P_m & 0 \ 0 & 0 \end{bmatrix}$ $\overline{0}$, where \mathbf{R}_{m+1} is Toeplitz.

Plan: For N.E. at order $m + 1$, we target to create an order recursion from order m.

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Creating Order Update

First, create auxiliary vectors $\begin{bmatrix} a_{m-1} \\ 0 \end{bmatrix}$ 0 $\Big]$ and $\Big[\begin{array}{c} 0 \\ B^* \end{array} \Big]$ \underline{a}_{m-1}^{B*} $\Big]$ using order-m vectors. Second, multiply from left using order- $\left(m+1\right)$ correlation matrix.

$$
\begin{aligned}\n\text{ELP} \quad \mathbf{R}_{m+1} \left[\begin{array}{c} a_{m-1} \\ 0 \end{array} \right] &= \left[\begin{array}{c} \mathbf{R}_{m} & \underline{F}_{m}^{B^{*}} \\ \underline{F}_{m}^{BT} & r(0) \end{array} \right] \left[\begin{array}{c} a_{m-1} \\ 0 \end{array} \right] \\
&= \left[\begin{array}{c} \mathbf{R}_{m} a_{m-1} \\ \underline{F}_{m}^{BT} a_{m-1} \end{array} \right] = \left[\begin{array}{c} P_{m-1} \\ \underline{0}_{m-1} \\ \Delta_{m-1} \end{array} \right], \text{ where } \Delta_{m-1} \triangleq \underline{F}_{m}^{BT} a_{m-1}. \quad \text{(1a)} \\
\text{BLP} \quad \mathbf{R}_{m+1} \left[\begin{array}{c} 0 \\ a_{m+1} \end{array} \right] &= \left[\begin{array}{c} r(0) & \underline{F}^{H} \\ \underline{F} & \mathbf{R}_{m} \end{array} \right] \left[\begin{array}{c} 0 \\ a_{m-1}^{B^{*}} \end{array} \right] \\
&= \left[\begin{array}{c} \underline{F}^{H} a_{m-1}^{B^{*}} \\ \mathbf{R}_{m} a_{m-1}^{B^{*}} \end{array} \right] = \left[\begin{array}{c} \Delta_{m-1}^{*} \\ \underline{0}_{m-1} \\ \underline{P}_{m-1} \end{array} \right]. \quad \text{(1b)}\n\end{aligned}
$$

Third, poll these two equations together by $(1a) + \Gamma_m \times (1b)$:

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Creating Order Update

$$
\mathbf{R}_{m+1}\left(\left[\begin{array}{c} \frac{a_{m-1}}{0} \end{array}\right] + \Gamma_m \left[\begin{array}{c} 0 \\ \frac{a_{m-1}}{a_{m-1}} \end{array}\right]\right) = \left[\begin{array}{c} P_{m-1} \\ \frac{0_{m-1}}{\Delta_{m-1}} \end{array}\right] + \Gamma_m \left[\begin{array}{c} \Delta_{m-1}^* \\ \frac{0_{m-1}}{P_{m-1}} \end{array}\right].
$$

Fourth, compare it to the order- $(m+1)$ N.E., ${\bf R}_{m+1}$ $\scriptstyle \stackrel{\ }{a}$ $\scriptstyle \stackrel{\ }{b}$ $\scriptstyle \stackrel{\ }{c}$ $\scriptstyle \stackrel{\ }{b}$ $\overline{0}$ $\big]$. To obtain order update relationship, we need:

$$
\left\{\n\begin{array}{rcl}\n\frac{a_m}{m} & \stackrel{\text{set}}{=} & \left[\n\begin{array}{c}\n a_{m-1} \\
 0\n\end{array}\right] + \Gamma_m \left[\n\begin{array}{c}\n 0 \\
 a_{m-1}^{B*} \\
 a_{m-1}^{B*}\n\end{array}\right],\n\end{array}\n\right.
$$
\n
$$
\left\{\n\begin{array}{rcl}\nP_m \\
 \underline{0}_m\n\end{array}\right\} & \stackrel{\text{set}}{=} & \left[\n\begin{array}{c}\nP_{m-1} \\
 \underline{0}_{m-1} \\
 \Delta_{m-1}\n\end{array}\right] + \Gamma_m \left[\n\begin{array}{c}\n \Delta_{m-1}^* \\
 \underline{0}_{m-1} \\
 \overline{P_{m-1}}\n\end{array}\right].
$$

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Solving for Γ_m That Allows Order Update

$$
\Rightarrow \begin{cases} P_m = P_{m-1} + \Gamma_m \Delta_{m-1}^* \\ 0 = \Delta_{m-1} + \Gamma_m P_{m-1} \end{cases}
$$

$$
\Gamma_m = -\frac{\Delta_{m-1}}{P_{m-1}} (= a_{m,m})
$$

$$
P_m = P_{m-1} \left(1 - |\Gamma_m|^2 \right)
$$

To ensure the prediction MSE $P_m\geq 0$, we require $|\mathsf{\Gamma}_m|^2\leq 1$.

 P_m is non-increasing as we increase the order of the predictor, i.e., $P_m < P_{m-1}$, $\forall m > 0$.

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Order Update Summary: Two Viewpoints of LD Recursion

Denote $\underline{a}_m\in\mathbb{C}^{(m+1)\times 1}$ as the tap weight vector of a forward-prediction-error filter of order $m = 0, ..., M$.

 $a_{m-1,0} = 1$, $a_{m-1,m} \triangleq 0$, $a_{m,m} = \Gamma_m$ (reflection coefficient)

Order Update—Forward Prediction Viewpoint

$$
a_{m,k} = a_{m-1,k} + \Gamma_m a_{m-1,m-k}^*, k = 0, 1, \dots, m
$$

Vector form:
$$
\underline{a}_m = \begin{bmatrix} \underline{a}_{m-1} \\ 0 \end{bmatrix} + \Gamma_m \begin{bmatrix} 0 \\ \underline{a}_{m-1}^{B^*} \end{bmatrix}
$$
(**)

Order Update—Backward Prediction Viewpoint

$$
a_{m,m-k}^* = a_{m-1,m-k}^* + \Gamma_m^* a_{m-1,k}, k = 0, 1, \ldots, m
$$

Vector form:
$$
\underline{a}_{m}^{B^{*}} = \begin{bmatrix} 0 \\ \underline{a}_{m-1}^{B^{*}} \end{bmatrix} + \Gamma_{m}^{*} \begin{bmatrix} \underline{a}_{m-1} \\ 0 \end{bmatrix}
$$

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

(4) Reflection Coefficient Γ_m

Let $P_0 = r(0)$ as the initial estimation error has power equal to the signal power, i.e., no regression is applied, we have

$$
P_M = P_0 \cdot \prod_{m=1}^M (1 - |\Gamma_m|^2).
$$

Question: Under what situation is $\Gamma_m = 0$? i.e., increasing order won't reduce error.

Consider a process with Markovian-like property in 2nd order statistic sense (e.g. AR process) s.t. info of further past is contained in k recent samples.

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Recall: Forward and Backward Prediction Errors

•
$$
f_m[n] = u[n] - \hat{u}[n] = \underline{a}_m^H \underbrace{u[n]}_{(m+1)\times 1}
$$

$$
\bullet \; b_m[n] = u[n-m] - \hat{u}[n-m] = \underline{a}_m^{B,T} \underline{u}[n]
$$

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

(5) About Δ_m

One can show that the cross-correlation of BLP error and $\underline{\mathsf{FLP}}$ error $\mathbb{E}\left[b_{m-1}[n-1]f_{m-1}^{*}[n]\right]$ is equal to Δ_{m-1} .

(Derive from the definition $\Delta_{m-1} \triangleq \underline{r}_m^{BT} \underline{a}_{m-1}$, and use definitions of $b_{m-1}[n-1], f_{m-1}^*[n]$ and orthogonality principle.)

Thus the reflection coefficient can be written as

$$
\Gamma_m = -\frac{\Delta_{m-1}}{P_{m-1}} = -\frac{\mathbb{E}\left[b_{m-1}[n-1]f_{m-1}^*[n]\right]}{\mathbb{E}\left[|f_{m-1}[n]|^2\right]}
$$

which is also the negative *partial correlation coefficient*.

Note: for the 0th order predictor, use the mean value, i.e., zero, as the estimate, s.t. $f_0[n] = u[n] = b_0[n],$

$$
\therefore \Delta_0 = \mathbb{E} [b_0[n-1]f_0^*[n]] = \mathbb{E} [u[n-1]u^*[n]] = r(-1) = r^*(1)
$$

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Preview: Relations of w.s.s and LP Parameters

For any w.s.s. process $\{u[n]\}$:

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

(6) Computing a_M and P_M by Forward Recursion

Case 1 : If we know the autocorrelation function $r(\cdot)$:

$$
0 \quad \Delta_{s} = N(-1) , P_{o} = N(0)
$$
\n
$$
\Theta = \int_{m=1}^{m} m = 1, ... M \quad (order recursive)
$$
\n
$$
m = -\frac{\Delta m - 1}{P_{m-1}}
$$
\n
$$
\frac{\Delta m}{P_{m}} = -\frac{\Delta m - 1}{P_{m-1}}
$$
\n
$$
\frac{\Delta m}{P_{m}} = \frac{\Delta m - 1}{P_{m}} \quad \frac{\Delta m}{P_{m}} = \frac{1}{P_{m}} \times \frac{1}{P_{m}} = \frac{1}{P_{m}} \times \frac{1}{P_{m}} = \frac{1}{P_{m}} \times \frac{1}{P_{m}} = \frac{1}{P_{m}} \times \frac{1}{P_{m}} = \frac{1}{P_{m}} \cdot (1 - |T_{m}|^{2})
$$

 $\bullet \,\,\#\,$ of iterations $=\sum_{m=1}^M m=\frac{M(M+1)}{2}$ $\frac{2M+1}{2}$, comp. complexity is $O(M^2)$

• $r(k)$ may be estimated from time average of one realization of $\{u[n]\}$: $\hat{r}(k) = \frac{1}{N-k} \sum_{n=k+1}^{N} u[n]u^{*}[n-k], \ k = 0, 1, ..., M$ (recall correlation ergodicity)

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

(6) Computing a_M and P_M by Forward Recursion

Case 2: If we know
$$
\Gamma_1
$$
, Γ_2 , ..., Γ_M and $P_0 = r(0)$, we can carry out the recursion for $m = 1, 2, ..., M$:

$$
\begin{cases}\n a_{m,k} = a_{m-1,k} + \Gamma_m a_{m-1,m-k}^*, \ k = 1, \dots, m \\
 P_m = P_{m-1} \left(1 - |\Gamma_m|^2 \right)\n\end{cases}
$$

Note:
$$
a_{m,m} = a_{m-1,m} + \Gamma_m a_{m-1,0}^* = 0 + \Gamma_m \cdot 1 = \Gamma_m
$$

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

(7) Inverse Form of Levinson-Durbin Recursion

Given the tap-weights \underline{a}_M , find the reflection coefficients $\Gamma_1, \Gamma_2, \ldots, \Gamma_M$:

Recall:
$$
\begin{cases} (FP) \ a_{m,k} = a_{m-1,k} + \Gamma_m a_{m-1,m-k}^*, & k = 0, \ldots, m \\ (BP) \ a_{m,m-k}^* = a_{m-1,m-k}^* + \Gamma_m^* a_{m-1,k}, & a_{m,m} = \Gamma_m \end{cases}
$$

Multiply (BP) by Γ_m and subtract from (FP):

$$
a_{m-1,k} = \frac{a_{m,k} - \Gamma_m a_{m,m-k}^*}{1 - |\Gamma_m|^2} = \frac{a_{m,k} - a_{m,m} a_{m,m-k}^*}{1 - |a_{m,m}|^2}, k = 0, \ldots, m-1
$$

 $\Rightarrow \Gamma_m = a_{m,m}, \Gamma_{m-1} = a_{m-1,m-1}, \dots,$ i.e., From $\underline{a}_M \Rightarrow \underline{a}_m \Rightarrow \Gamma_m$ iterate with $m = M - 1$, $M - 2$, ... to lower order

Lattice structure:

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

(8) Autocorrelation Function & Reflection Coefficients

Recall: The 2nd-order statistics of a stationary time series can be represented in terms of autocorrelation function $r(k)$, or equivalently the power spectral density by taking DTFT.

Another way is to use $\{r(0), \Gamma_1, \Gamma_2, \ldots, \Gamma_M\}$.

To find the relation between them, recall:

$$
\Delta_{m-1} \triangleq \underline{r}_m^{BT} \underline{a}_{m-1} = \sum_{k=0}^{M-1} a_{m-1,k} r(-m+k) \text{ and } \Gamma_m = -\frac{\Delta_{m-1}}{P_{m-1}}
$$

\n
$$
\Rightarrow -\Gamma_m P_{m-1} = \sum_{k=0}^{m-1} a_{m-1,k} r(k-m), \text{ where } a_{m-1,0} = 1.
$$

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

(8) Autocorrelation Function & Reflection Coefficients

$$
\bullet \ \ r(m) = r^*(-m) = -\Gamma_m^* P_{m-1} - \sum_{k=1}^{m-1} a_{m-1,k}^* r(m-k)
$$

 $r(1), \ldots, r(M)$ can be generated iteratively. Note that a_m can be found using $r(0)$, Γ_1 , Γ_2 , ..., Γ_M by (6.2).

- **2** Recall if $r(0), \ldots, r(M)$ are given, we can get a_m by (6.1) . So $Γ_1, ..., Γ_M$ can be obtained iteratively: $Γ_m = a_{m,m}$.
- **3** These facts imply that the reflection coefficients $\{\Gamma_k\}$ can uniquely represent the 2nd-order statistics of a w.s.s. process.

[\(1\) Motivation; \(2\) The Recursion; \(3\) Creating Order Update](#page-1-0)

[\(4\) Reflection Coefficient Γ](#page-8-0)_m; (5) Δ_m

[\(6\) forward recursion; \(7\) inverse recursion; \(8\) 2nd-order stat](#page-12-0)

Summary

Statistical representation of w.s.s. process

Detailed Derivations/Examples

Example of Forward Recursion Case 2

e.g. (case2). Given
$$
\Gamma_1
$$
, Γ_2 , Γ_3 and $P(s)$, find Δ_3 and P_3 of
\na predictron-term filter of order 3.
\n① $P_0 - r(s)$
\n① $m=1: \ \ \Delta_{10} = 1$; $\Delta_{11} = \Gamma_1$; $\Delta_{12} = 0$; $P_1 = P_0(1-|\Gamma_1|^2)$
\n② $m=2: \ \ \Delta_{20} = 1$; $\Delta_{21} = \Delta_{11} + \Gamma_2 \Delta_{11}^* = \Gamma_1 + \Gamma_2 \Gamma_1^*$
\n $\Delta_{22} = \Gamma_2$
\n $P_2 = P_1 (1-|\Gamma_2|^*)$
\n③ $m=3: \ \ \Delta_{3,0} = 1$; $\Delta_{3,1} = \Delta_{3,1} + \Gamma_3 \Delta_{2,2}^* = \Gamma_1 + \Gamma_2 \Gamma_1^*$; Γ_1^*
\n $\Delta_{3,2} = \beta_{2,12} + \Gamma_3 \Delta_{2,1}^* = \Gamma_2 + \Gamma_3 \Gamma_1^* + \Gamma_1 \Gamma_2^*$
\n $\Delta_{3,3} = \Gamma_3$
\n $P_3 = P_2 (1-|\Gamma_3|^2)$

Proof for Δ_{m-1} Property

Haykin's 4th Ed. (PIS2) * partial connelation (PARCOR) coeff. between function and bun [n-1]. Record $\begin{array}{lll} \displaystyle \rho_m \triangleq & \displaystyle \frac{E(b_{m1}[n\cdot 1]f_{m1}^*[n\cdot 1]}{(E[1b_{m1}[n\cdot 1]f_{m1}^*[n\cdot 1])^{\prime 2}} \frac{f^{ \text{th~MSS}}}{(m)} = -\Gamma_m & \displaystyle \frac{E[\left(\left\lceil \frac{1}{m}[n\cdot 1]^2\right\rceil] = E[\left\lceil \frac{1}{m}[n\cdot 1]^2\right\rceil]}{2\Gamma_m} = \Gamma_m \end{array}$