Statistical Signal Processing 7. Classic Methods for Spectrum Estimation

Electrical & Computer Engineering North Carolina State University

Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland, College Park. Contact: chauwai.wong@ncsu.edu.

Summary of Readings

- Overview Haykin 1.16, 1.10
- 7. Non-parametric method Hayes 8.1; 8.2 (8.2.3, 8.2.5); 8.3
- 8. Parametric method Hayes 8.5, 4.7; 8.4
- **9. Frequency estimation** Hayes 8.6

Review

- On DSP and Linear algebra: Hayes 2.2, 2.3
- On probability and parameter estimation: Hayes 3.1 3.2

Spectrum Estimation: Background

- Spectral estimation: determine the power distribution in frequency of a w.s.s. random process
 - E.g., "Does most of the power of a signal reside at low or high frequencies?" "Are there resonances in the spectrum?"

Applications:

- Needs of spectral knowledge in spectrum domain non-causal
 Wiener filtering, signal detection and tracking, beamforming, etc.
- Wide use in diverse fields: radar, sonar, speech, biomedicine, geophysics, economics, ...
- Estimating p.s.d. of a w.s.s. process
 \vee estimating autocorrelation at all lags

Spectral Estimation: Challenges

- A w.s.s process is infinitely long. (Why?) When a limited amount of observation data is available:
 - Can't get r(k) for all k and/or may have inaccurate estimate of r(k)
 - Scenario-1: transient measurement (earthquake, volcano, ...)
 - Scenario-2: constrained to short period to ensure (approx.) stationarity in speech processing

$$\hat{r}(k) = \frac{1}{N-k} \sum_{n=k+1}^{N} u[n] u^*[n-k], \ k = 0, 1, \dots M$$

Observed data may have been corrupted by noise

Spectral Estimation: Major Approaches

Nonparametric methods

- No assumptions on the underlying model for the data
- Periodogram and its variations (averaging, smoothing, ...)
- Minimum variance method
- Parametric methods
 - ARMA, AR, MA models
 - Maximum entropy method
- Frequency estimation (noise subspace methods)
 - For harmonic processes that consist of a sum of sinusoids or complex-exponentials in noise
- High-order statistics

Example of Speech Spectrogram

Figure 3 of SPM May'98 Speech Survey

Nonparametric spectral estimation [6]

"Sprouted grains and seeds are used in salads and dishes such as chop suey"

Section 3.1 Classical Nonparametric Methods

Recall: given a w.s.s. process {x[n]} with

$$\begin{cases} E[x[n]] = m_x \\ E[x^*[n]x[n+k]] = r(k) \end{cases}$$

The power spectral density (p.s.d.) is defined as

$$P(f) = \sum_{k=-\infty}^{\infty} r(k)e^{-j2\pi fk} \qquad \qquad -\frac{1}{2} \le f \le \frac{1}{2}$$

(or $\omega = 2\pi f : -\pi \le \omega \le \pi$

As we can take DTFT on a specific realization of a random process, What is the relation between the DTFT of a specific signal and the p.s.d. of the random process?

Ensemble Average of Squared Fourier Magnitude

 p.s.d. can be related to the ensemble average of the squared Fourier magnitude |X(ω)|²

Consider
$$\hat{P}_{M}(f) \stackrel{\Delta}{=} \frac{1}{2M+1} \left| \sum_{n=-M}^{M} x[n] e^{-j2\pi f n} \right|^{2}$$

= $\frac{1}{2M+1} \sum_{n=-M}^{M} \sum_{m=-M}^{M} x[n] x^{*}[m] e^{-j2\pi f (n-m)}$

i.e., take DTFT on (2*M*+1) samples and examine normalized squared magnitude

Note: for each frequency f, $\hat{P}_M(f)$ is a random variable

Ensemble Average of $\hat{P}_{M}(f)$

$$\begin{split} E[\hat{P}_{M}(f)] &= \frac{1}{2M+1} \sum_{n=-M}^{M} \sum_{m=-M}^{M} r(n-m) e^{-j2\pi f(n-m)} \\ &= \frac{1}{2M+1} \sum_{k=-M}^{M} (2M+1-|k|) r(k) e^{-j2\pi fk} \\ &= \sum_{k=-M}^{M} \left(1 - \frac{|k|}{2M+1}\right) r(k) e^{-j2\pi fk} \\ &= \sum_{k=-M}^{M} r(k) e^{-j2\pi fk} - \frac{1}{2M+1} \sum_{k=-M}^{M} |k| r(k) e^{-j2\pi fk} \end{split}$$

• Now, what if *M* goes to infinity?

P.S.D. and Ensemble Fourier Magnitude

If the autocorrelation function decays fast enough s.t.

$$\sum_{k=-\infty}^{\infty} |k| r(k) < \infty \quad (i.e., r(k) \to 0 \text{ rapidly for } k \uparrow)$$

then
$$\lim_{M \to \infty} E[\hat{P}_M(f)] = \sum_{k=-\infty}^{\infty} r(k) e^{-j2\pi f k} = P(f)$$

p.s.d.
Thus
$$P(f) = \lim_{M \to \infty} E\left[\frac{1}{2M+1} \left|\sum_{n=-M}^{M} x[n] e^{-j2\pi f n}\right|^2\right] \quad (**)$$

Smeared P.S.D. for Finite Length Data

value of the periodogram.

[Hayes Fig. 8.5]

Frequency Resolution Improves as N increases

ECE792-41 Statistical SP & ML

3.1.1 Periodogram Spectral Estimator

(1) This estimator is based on (**)

Given an observed data set {x[0], x[1], ..., x[N-1]}, the periodogram is defined as

$$\hat{P}_{\text{PER}}(f) = \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] e^{-j2\pi f n} \right|^2$$

$$X[n] \xrightarrow{} X_N[n] \xrightarrow{} X_N[n] \xrightarrow{} X_N(K) \xrightarrow{} X_N[K] \xrightarrow{} X_N[K]$$

in $n \in [0, N-1]$
 $X[n] \xrightarrow{} X_N[n] \xrightarrow{} X_N(K) \xrightarrow{} X_N[K]$

An Equivalent Expression of Periodogram

The periodogram estimator can be written in terms of $\stackrel{\wedge}{r(k)}$

$$\hat{P}_{\text{PER}}(f) = \sum_{k=-(N-1)}^{N-1} \hat{r}(k) e^{-j2\pi fk}$$

where
$$\hat{r}(k) = \frac{1}{N} \sum_{n=0}^{N-1-k} x^*[n] x[n+k]; \hat{r}(-k) = \hat{r}^*(k) \text{ for } k \ge 0$$

- The quality of the estimates for the higher lags of *r*(*k*) may be poorer since they involve fewer terms of lag products in the averaging operation
- Autocorrelation sequence is zeroed out for $|k| \ge N$.

Exercise: Prove using the definition of the periodogram estimator.

(2) Filter Bank Interpretation of Periodogram

For a particular frequency of f_{0} . $\hat{P}_{\text{PER}}(f_0) = \frac{1}{N} \left| \sum_{k=0}^{N-1} e^{-j2\pi f_0 k} x[k] \right|^2$ $= \left[N \cdot \left| \sum_{k=0}^{N-1} h[n-k] x[k] \right|^2 \right]_{n=0}$ $h[n] = \begin{cases} \frac{1}{N} \exp(j2\pi f_0 n) & \text{for } n = -(N-1), \dots, -1, 0; \\ 0 & \text{otherwise} \end{cases}$ where

- Impulse response of the filter h[n]: a windowed version of a complex exponential

$$H(f) = \frac{\sin N\pi (f - f_0)}{N\sin \pi (f - f_0)} \exp[j(N - 1)\pi (f - f_0)]$$

aliased-sinc function centered at $f_{0:}$

• *H*(*f*) is a bandpass filter

- Center frequency is f_0
- 3dB bandwidth $\approx 1/N$

Periodogram: Filter Bank Perspective

- Can view the periodogram as an estimator of power spectrum that has a built-in filterbank
 - The filter bank \sim a set of bandpass filters
 - The estimated p.s.d. for each frequency f_0 is the power of one output sample of the bandpass filter centering at f_0

$$\hat{P}_{\text{PER}}(f_0) = \left[N \cdot \left| \sum_{k=0}^{N-1} h[n-k] x[k] \right|^2 \right]_{n=0}$$

E.g. White Gaussian Process

[Lim/Oppenheim Fig.2.4] Periodogram of zero-mean white Gaussian noise using *N*-point data record: N = 128, 256, 512, 1024

The random fluctuation (measured by variance) of the periodogram estimator does not decrease with increasing *N* → periodogram is an inconsistent estimator

(3) How Good is Periodogram for Spectral Estimation?

If
$$N \to \infty$$
, will $\stackrel{\wedge}{P}_{\text{PER}} \to \text{p.s.d.} P(f)$?

• Estimation: Tradeoff between bias and variance

$$E(\hat{\theta}) \neq \theta$$
$$E[|\hat{\theta} - E(\hat{\theta})|^{2}] = ?$$

• For white Gaussian process, one can show that at $f_k = k/N$

$$\Rightarrow E[\hat{P}_{PER}(f\kappa)] = P(f\kappa), \ \kappa = 0, 1, \dots, \frac{N}{2}$$

$$Var[\hat{P}_{PER}(f\kappa)] = \begin{cases} P^{2}(f\kappa), \ \kappa = 1, \dots, \frac{N}{2} - 1 \\ 2P^{2}(f\kappa), \ \kappa = 0, \frac{N}{2} \end{cases} \qquad \propto P^{2}(f\kappa)$$

Performance of Periodogram: Summary

- The periodogram for white Gaussian process is an <u>unbiased</u> estimator but not <u>consistent</u>
 - The variance does not decrease with increasing data length
 - Its standard deviation is as large as the mean (equal to the quantity to be estimated)
- Reasons for the poor estimation performance
 - Given *N* real data points, the # of unknown parameters $\{P(f_0), \dots, P(f_{N/2})\}$ we try to estimate is *N*/2, i.e., proportional to *N*
- Similar conclusions can be drawn for processes with arbitrary p.s.d. and arbitrary frequencies
 - Asymptotically unbiased (as N goes to infinity) but inconsistent

3.1.2 Averaged Periodogram

- One solution to the variance problem of periodogram
 - Average K periodograms computed from K sets of data records

$$\hat{P}_{\text{AVPER}}(f) = \frac{1}{K} \sum_{m=0}^{K-1} \hat{P}_{\text{PER}}^{(m)}(f)$$
where $\hat{P}_{\text{PER}}^{(m)}(f) = \frac{1}{L} \left| \sum_{n=0}^{L-1} x_m[n] e^{-j2\pi f n} \right|^2$

and the *N* = *KL* data points are arranged into *K* sets of length *L*: $\{x_0[0], ..., x_0[L-1]; x_1[n], ..., x_1[L-1]; ..., x_{K-1}[L-1]; ..., x_{K-1}[n], ..., x_{K-1}[L-1]\}$

Performance of Averaged Periodogram

- Assume the *K* sets of data records are mutually uncorrelated.
- For a white Gaussian input signal, $\hat{P}_{AVPER}^{(m)}(f), m = 0, ..., L 1$ are i.i.d., and one can verify that
 - $\operatorname{Var}[\hat{P}_{\mathrm{AVPER}}(f_i)] =$

$$\begin{cases} \frac{1}{K}P^2(f_i), & i = 1, 2, \cdots, \frac{L}{2} - 1, \\ \frac{2}{K}P^2(f_i), & i = 0, \frac{L}{2}, \end{cases}$$

where $f_i = i/L$.

- If *L* is fixed, *K* and *N* are allowed to go to infinity, then $\hat{P}_{AVPER}(f)$ is a consistent estimator.

Practical Averaged Periodogram

• Usually we partition an available data sequence of length *N* into *K* non-overlapping blocks, each block has length *L* (i.e., *N*=*KL*):

$$x_m[n] = x[n+mL],$$
 $n = 0, 1, ..., L-1$
 $m = 0, 1, ..., K-1$

- Since the blocks are contiguous, the *K* sets of data records may not be completely uncorrelated
 - Thus the variance reduction factor is in general less than K
- Periodogram averaging is also known as Bartlett's method

Averaged Periodogram for Fixed Data Size

• Given a data record of fixed length *N*, will the result continue improving if we segment it into more and more subrecords?

We examine for a <u>real-valued</u> stationary process:

$$E\begin{bmatrix} \stackrel{\wedge}{P}_{\text{AV PER}}(f) \end{bmatrix} = E\begin{bmatrix} \frac{1}{K}\sum_{m=0}^{K-1}\stackrel{\wedge}{P}_{\text{PER}}(f) \\ \xrightarrow{} \\ \xrightarrow$$

identical stat. mean for all m

Note $\hat{P}_{\text{PER}}^{(0)}(f) = \sum_{l=-(L-1)}^{L-1} \hat{r}^{(0)}(l) e^{-j2\pi f l} \longrightarrow \text{an equivalent} \\ \text{where } \hat{r}^{(0)}(l) = \frac{1}{L} \sum_{n=0}^{L-1-|l|} x[n]x[n+|l|] \longrightarrow \text{an equivalent} \\ \text{of } x[n]$

$$\Rightarrow E[\hat{\Gamma}^{(0)}(l)] = (I - \frac{|l|}{L}) \Lambda(l) \text{ for } |l| \le L - I$$

$$\triangleq W(l)$$

$$\stackrel{\sim}{=} E[\hat{P}_{AVPER}(f)] = \sum_{l=-(L-I)}^{L-I} W(l) \Gamma(l) e^{-j2\pi f l}$$

$$W[K] = \begin{cases} 1 - \frac{|K|}{L} \text{ for } |K| \leq L-1 & W(f) \\ 0 & 0.W. & \text{triangular} & \text{3dB b.W.} \\ (Barlett) & \rightarrow & K \\ \end{array}$$

$$\Rightarrow W(f) = \frac{1}{L} \left(\frac{\text{Sin TT} f L}{\text{Sin TT} f} \right)^{\perp} & \text{Windows}^{\text{W}} & f \\ \end{cases}$$

Statistical Properties of Averaged Periodogram

 $E[\hat{P}_{\text{AV PER}}(f)] = \text{DTFT}[\{w[k]r(k)\}]_{f}$

 $\neq P(f)$

multiplication in time

 $= \int_{-\frac{1}{2}}^{\frac{1}{2}} W(f-\eta) P(\eta) d\eta \quad \text{convolution in frequency}$

Biased estimator (both averaged and regular periodogram)

- The convolution with the window function w[k] lead to the mean of the averaged periodogram being smeared from the true p.s.d.
- Asymptotically unbiased as $L \rightarrow \infty$
 - To avoid the smearing, the window length L must be large enough so that the narrowest peak in P(f) can be resolved
- Fixing *N* = *KL*, the choice of *K* leads to a tradeoff between bias and variance

Small *K* => better resolution (smaller smearing/bias) but larger variance

Non-parametric Spectrum Estimation: Recap

• Periodogram

- Motivated by relation between p.s.d. and squared magnitude of DTFT of a finite-size data record
- Variance: won't vanish as data length N goes infinity: "inconsistent"
- Mean: asymptotically unbiased w.r.t. data length N in general equivalent to apply triangular window to autocorrelation function (windowing in time gives smearing/smoothing in freq. domain) unbiased for white Gaussian (flat spectrum)
- Averaged periodogram
 - Reduce variance by averaging *K* sets of data record of length *L* each
 - Small *L* increases smearing/smoothing in p.s.d. estimate thus higher
 bias → equiv. to triangular windowing to autocorrelation sequence
- Windowed periodogram: generalize to other symmetric windows

Case Study on Non-parametric Methods

 Test case: a process consists of narrowband components (sinusoids) and a broadband component (AR)

$$- x[n] = 2\cos(\omega_1 n) + 2\cos(\omega_2 n) + 2\cos(\omega_3 n) + z[n],$$

where $z[n] = -a_1 z[n-1] + v[n], a_1 = -0.85, \sigma_v^2 = 0.1,$
 $\omega_1/2\pi = 0.05, \omega_2/2\pi = 0.40, \omega_3/2\pi = 0.42.$

- N=32 data points are available periodogram resolution f=1/32
- Examine typical characteristics of various non-parametric spectral estimators

(Fig.2.17 from Lim/Oppenheim book)

ECE792-41 Statistical SP & ML

Nonparametric spectral estimation [30]

3.1.3 Periodogram with Windowing

Review and Motivation

The periodogram estimator can be given in terms of r(k)

$$\hat{P}_{\text{PER}}(f) = \sum_{k=-(N-1)}^{N-1} \hat{r}(k) e^{-j2\pi fk}$$

ere $\hat{r}(k) = \frac{1}{N} \sum_{k=-(N-1)}^{N-1-k} x^{*}[n]x[n+k]; \quad \hat{r}(-k) = \hat{r}^{*}$

where
$$\hat{r}(k) = \frac{1}{N} \sum_{n=0}^{N-1-k} x^*[n]x[n+k]; \quad \hat{r}(-k) = \hat{r}(k)$$

for $k \ge 0$

- The higher lags of r(k), the poorer estimates since the estimates involve fewer terms of lag products in the averaging operation
- Solution: weigh the higher lags less
 - Trade variance with bias

 \wedge

<u>Windowing</u>

Use a window function to weigh the higher lags less

i.e.
$$\hat{P}_{Win}(f) = \sum_{K=-(N-1)}^{N-1} W(K) \hat{\Gamma}(K) e^{-j2\pi fK}$$

where $W(K)$ is a "lag window" with properties of:
① $0 \le W(K) \le W[0] = 1$ $w(0)=1$ preserves variance $r(0)$
② $W(-K) = W(K)$ $symmetric$
③ $W(K) = 0$ for $|K| > M$ where $M \le N-1$
④ $W(f)$ must be chosen to ensure $\hat{P}_{Win}(f) \ge 0$

- Effect: periodogram smoothing
 - − Windowing in time ⇔ Convolution/filtering the periodogram
 - Also known as the Blackman-Tukey method

Common Lag Windows

• Much of the art in non-parametric spectral estimation is in choosing an appropriate window (both in type and length)

(from Lim-Oppenheim book)

Nonparametric spectral estimation [33]

TABLE 2.1 COMMON LAG WINDOWS

Name	Definition	Fourier Transform	
Rectangular	$w(k) = \begin{cases} 1, & k \le M \\ 0, & k > M \end{cases}$	$W(\omega) = W_{\kappa}(\omega)$ $= \sin \frac{\omega}{2}(2M + 1)$	
Bartlett	$w(k) = \begin{cases} 1 - \frac{ k }{M}, & k \le M \\ 0, & k > M \end{cases}$	$W(\omega) = W_{B}(\omega)$ $= \frac{1}{M} \left(\frac{\sin M\omega/2}{\sin \omega/2}\right)^{2}$	
Hanning	$w(k) = \begin{cases} \frac{1}{2} + \frac{1}{2} \cos \frac{\pi k}{M}, & k \le M \\ 0, & k > M \end{cases}$	$W(\omega) = \frac{1}{4} W_R(\omega - \pi/M) + \frac{1}{2} W_R(\omega) + \frac{1}{4} W_R(\omega + \pi/M)$	
Hamming	$w(k) = \begin{cases} 0.54 + 0.46 \cos \frac{\pi k}{M}, & k \le M\\ 0, & k > M \end{cases}$	$W(\omega) = 0.23 W_R(\omega - \pi/M)$ + 0.54 $W_R(\omega)$ + 0.23 $W_R(\omega + \pi/M)$	
Parzen	$w(k) = \begin{cases} 2\left(1 - \frac{ k }{M}\right)^3 - \left(1 - 2\frac{ k }{M}\right)^3, & k \le M/2 \\ k > 3 \end{cases}$	$V_2 \qquad W(\omega) = \frac{8}{M^3} \left(\frac{3}{2} \frac{\sin^4 M \omega / 4}{\sin^4 \omega / 2} \right)$	Table 2.1 common lag window (from Lim-Oppenheim bo
	$\begin{bmatrix} 2\left(1 - \frac{ K }{M}\right), & \frac{m}{2} < k \le k \\ 0, & k > M \end{bmatrix}$	$M = -\frac{\sin 2\omega/4}{\sin^2 \omega/2} $	Nonparametric spectral estimation

Discussion: Estimate r(k) via Time Average

• Normalizing the sum of (N-k) pairs

by a factor of 1/N? v.s. by a factor of 1/(N-k)?

Biased (low variance)Unbiased (may not non-neg. definite)
$$\hat{\Gamma}_{1}(K) = \frac{1}{N} \sum_{n=0}^{N-1-K} X(n+K) X^{*}(n);$$
 $\hat{\Gamma}_{2}(K) = \frac{1}{N-K} \sum_{n=0}^{N-1-K} X(n+K) X^{*}(n);$ $E(\hat{\Gamma}_{1}(K)) = \frac{N-K}{N} \Gamma(K)$ $E(\hat{\Gamma}_{2}(K)) = \Gamma(K)$ Hints on proving
the non-negative
definiteness: using
 $\hat{r}_{1}(k)$ to construct
correlation matrix $\hat{R}_{N} = X^{H}X, Where $X(n+1);$ $X(N-1)$
 \vdots
 $X(N-1);$ $X(0)$
 \vdots
 $X(N-1);$$

3.1.4 Minimum Variance Spectral Estimation (MVSE)

- Recall: filter bank perspective of periodogram
 - The periodogram can be viewed as estimating the p.s.d. by forming a bank of narrowband filters with sinc-like response
 - The high sidelobe can lead to "leakage" problem:
 large output power due to p.s.d. outside the band of interest
- MVSE designs filters to minimize the leakage from out-ofband spectral components
 - Thus the shape of filter is dependent on the frequency of interest and data adaptive

(unlike the identical filter shape for periodogram)

- MVSE is also referred to as the *Capon* spectral estimator

Main Steps of MVSE Method

- 1. Design a bank of bandpass filters $H_i(f)$ with center frequency f_i so that
 - Each filter rejects the maximum amount of out-of-band power
 - And passes the component at frequency f_i without distortion
- 2. Filter the input process $\{x[n]\}$ with each filter in the filter bank and estimate the power of each output process
- 3. Set the power spectrum estimate at frequency f_i to be the power estimated above divided by the filter bandwidth

Formulation of MVSE

The MVSE designs a filter H(f) for each frequency of interest f_0

minimize the output power

$$\rho = \int_{-\frac{1}{2}}^{+\frac{1}{2}} |H(f)|^2 P(f) df$$

ect to $H(f_0) = 1$

(i.e., to pass the components at f_0 w/o distortion)

subj

From the filter bank perspective of periodogram:

$$H(f) = \sum_{n=-(N-1)}^{0} h[n] e^{-j2\pi fn}$$

ECE792-41 Statistical SP & ML

Matrix-Vector Form of MVSE Formulation

Define
$$\begin{pmatrix} h(0) \\ h(-1) \\ \vdots \\ h(-1) \\ \vdots \\ h(-1) \end{pmatrix} \Rightarrow \begin{pmatrix} e = h^{H} R^{T} h \\ h(0) R^{T} h \\ h(0) R^{T} h \end{pmatrix}$$
$$[h(0) R^{T} h + 1) - h(1 - N)] \begin{bmatrix} h(0) R^{T} h \\ r(1) R^{T} h \\ \vdots \\ \vdots \\ r(1) R^{T} h \end{pmatrix}$$
$$\begin{pmatrix} e \\ e \\ e \\ e \\ e \\ r(1) R^{T} h \\ \vdots \\ \vdots \\ r(1) R^{T} h \end{pmatrix}$$
$$\Rightarrow The constraint can be written in vector form as $\underline{h}^{H} \underline{e} = 1$
$$\underbrace{h^{H} e}_{H(f_{0})}$$$$

Thus the problem becomes $\min_{\underline{h}} \underline{h}^{H} R^{T} \underline{h} \qquad \text{subject to} \qquad \underline{h}^{H} \underline{e} = 1$

Solving MVSE

$$J \stackrel{def}{=} \underline{h}^{H} R^{T} \underline{h} + \operatorname{Re} \left[2\lambda (1 - \underline{h}^{H} \underline{e}) \right]$$

- Use Lagrange multiplier approach for solving the constrained optimization problem
 - Define real-valued objective function s.t. the stationary condition can be derived in a simple and elegant way based on the theorem for complex derivative/gradient operators

$$\min_{\underline{h},\lambda} J = \underline{h}^{H} R^{T} \underline{h} + \lambda (1 - \underline{h}^{H} \underline{e}) + \left[\lambda (1 - \underline{h}^{H} \underline{e}) \right]^{*}$$
$$= \underline{h}^{H} R^{T} \underline{h} + \lambda (1 - \underline{h}^{H} \underline{e}) + \lambda^{*} (1 - \underline{e}^{H} \underline{h})$$

either $\nabla_{\underline{h}^*} J = 0 \Rightarrow R^T \underline{h} - \lambda \underline{e} = 0$ or $\nabla_{\underline{h}} J = 0 \Rightarrow (\underline{h}^H R^T)^T - \lambda^* \underline{e}^* = 0$ $\Rightarrow (R^T)^H \underline{h} - \lambda \underline{e} = 0 \Rightarrow R^T \underline{h} - \lambda \underline{e} = 0$ and

 $\Rightarrow \underline{h} = \lambda (R^T)^{-1} \underline{e}$ and $\underline{h}^H \underline{e} = 1$

ECE792-41 Statistical SP & ML

Solution to MVSE $\min_{\underline{h},\lambda} J = \underline{h}^H R^T \underline{h} + \lambda (1 - \underline{h}^H \underline{e}) + \left[\lambda (1 - \underline{h}^H \underline{e}) \right]^*$

$$\begin{cases} \nabla_{\lambda^*} \text{ or } \nabla_{\lambda} J = 0 \implies \underline{h}^{\mathrm{H}} \underline{e} = 1 \quad (*) \\ \nabla_{\underline{h}^*} \text{ or } \nabla_{\underline{h}} J = 0 \implies R^T \underline{h} - \lambda \underline{e} = 0 \implies \underline{h} = \lambda (R^T)^{-1} \underline{e} \quad (**) \end{cases}$$

Bring (**) into (*):

$$\lambda = \frac{1}{\underline{e}^{H} (R^{T})^{-1} \underline{e}}$$

Filter's output power: $\rho = \underline{h}^{H} R^{T} \underline{h} = \underline{h}^{H} R^{T} (R^{T})^{-1} \underline{e} \lambda$ $= \lambda$ The optimal filter and its output power:

$$\underline{h}_{MV} = \frac{\left(R^{T}\right)^{-1}}{\underline{e}^{H}\left(R^{T}\right)^{-1}\underline{e}} \quad \underline{e}$$

$$\rho = \frac{1}{\underline{e}^{H}\left(R^{T}\right)^{-1}\underline{e}}$$

MVSE: Summary

If choosing the bandpass filters to be FIR of length q, its 3dB-b.w. is approximately 1/q

Thus the MVSE is

$$\hat{P}_{\mathrm{MV}}(f) = \frac{q}{\underline{e}^{H}(\hat{R}^{T})^{-1}\underline{e}}$$

(i.e. normalize by filter b.w.)

 \hat{R} is $q \times q$ correlation matrix

$$\underline{e} = \begin{bmatrix} 1 \\ \exp(j2\pi f) \\ \vdots \\ \exp(j2\pi f(q-1)) \end{bmatrix}$$

- MVSE is a data adaptive estimator and provides improved resolution and reduced variance over periodogram
 - Also referred to as "High-Resolution Spectral Estimator"
 - Doesn't assume a particular underlying model for the data

MVSE vs. Periodogram

• MVSE is a data adaptive estimator and provides improved resolution and reduced variance over periodogram

	Periodogram	MVSE
Equivalent Bandpass Filter <i>h</i>	<u>e</u>	$\frac{\left(R^{T}\right)^{-1}}{\underline{e}^{H}\left(R^{T}\right)^{-1}\underline{e}} \underline{e}$
<u></u>	Filter is "universal" data-independent	Filter adapts to observation data via <i>R</i>
Equivalent spectrum estimate $\hat{P}(f)$	$q \cdot \underline{e}^{H} \hat{R}^{T} \underline{e}$	$\frac{q}{\underline{e}^{H}(\hat{R}^{T})^{\!-\!1}\underline{e}}$

Recall: Case Study on Non-parametric Methods

 Test case: a process consists of narrowband components (sinusoids) and a broadband component (AR)

$$- x[n] = 2\cos(\omega_1 n) + 2\cos(\omega_2 n) + 2\cos(\omega_3 n) + z[n],$$

where $z[n] = -a_1 z[n-1] + v[n], a_1 = -0.85, \sigma_v^2 = 0.1,$
 $\omega_1/2\pi = 0.05, \omega_2/2\pi = 0.40, \omega_3/2\pi = 0.42.$

- N=32 data points are available periodogram resolution f=1/32
- Examine typical characteristics of various non-parametric spectral estimators

(Fig.2.17 from Lim/Oppenheim book)

ECE792-41 Statistical SP & ML

Nonparametric spectral estimation [45]

<u>Ref. on Derivative and Gradient Operators for</u> <u>Complex-Variable Functions</u>

Ref: D.H. Brandwood, "A complex gradient operator and its application in adaptive array theory," in IEE Proc., vol. 130, Parts F and H, no.1, Feb. 1983.

(downloadable from IEEEXplore)

 Solving constrained optimization with real-valued objective function of complex variables, subject to constraint function of complex variables

As seen in minimum variance spectral estimation and other array/statistical signal processing context.

Reference

Recall: Filtering a Random Process

Chi-Squared Distribution

If
$$x(n] \sim iid N(o,1)$$
 for $n=0,1,...N-1$, and
 $y = \sum_{n=0}^{N-1} x^{*}(n)$,
then y follows chi-squared distribution of
degree N, i.e. $y \sim Xn^{*}$
and $E[y] = N$, $Var(y) = 2N$

Chi-Squared Distribution (cont'd)

$$p.d.f. of \mathcal{Y} \sim \mathcal{X}_{N}^{\dagger}:$$

$$p(\mathcal{Y}) = \begin{cases} \frac{1}{2^{N/2} \prod (N/2)} \mathcal{Y}^{\frac{N}{2}-1} - \mathcal{Y}^{\frac{1}{2}} & \text{if } \mathcal{Y} \ge 0 \\ 0 & \text{if } \mathcal{Y} < 0 \end{cases}$$
where $\prod (\cdot)$ is the gamma integral
$$\prod (\chi+1) = \int_{0}^{\infty} \mathcal{Y}^{\chi} e^{-\mathcal{Y}} d\mathcal{Y} \text{ for } \chi > -1.$$

Note if X is an integer,
$$\Gamma(n+1) = n\Gamma(n) = n!$$

Periodogram of White Gaussian Process

For
$$f_{\kappa} = K/N$$
, it can be shown that

$$\begin{cases} \frac{2\hat{P}_{PER}(f_{\kappa})}{P(f_{w})} \sim \chi_{12}^{2} \quad for \quad k=1,2,\dots,\frac{N}{2}-1; \\ P(f_{w}) & \frac{\hat{P}_{PER}(f_{\kappa})}{P(f_{w})} \sim \chi_{11}^{2} \quad for \quad k=0,\frac{N}{2} \\ \end{cases}$$

$$\Rightarrow \quad E[\hat{P}_{PER}(f_{\kappa})] = P(f_{\kappa}), \quad k=0,1,\dots,\frac{N}{2}-1; \\ Var[\hat{P}_{PER}(f_{\kappa})] = \begin{cases} P^{2}(f_{\kappa}), \quad k=1,\dots,\frac{N}{2}-1; \\ 2D^{2}(f_{\kappa}), \quad k=0,\frac{N}{2} \end{cases}$$

See proof in Appendix 2.1 in Lim-Oppenheim Book: - Basic idea is to examine the distribution of real and imaginary part of the DFT, and take the magnitude

ECE792-41 Statistical SP & ML