Statistical Signal Processing 8. Parametric Methods for Spectral Estimation

Electrical & Computer Engineering North Carolina State University

Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland, College Park. Contact: chauwai.wong@ncsu.edu.

Summary of Related Readings on Part-III

Overview Haykins 1.16, 1.10

- 7. Non-parametric method Hayes 8.1; 8.2 (8.2.3, 8.2.5); 8.3
- 8. Parametric method

Hayes 8.5, 4.7; 8.4

9. Frequency estimation Hayes 8.6

Review

- On DSP and Linear algebra: Hayes 2.2, 2.3
- On probability and parameter estimation: Hayes $3.1 3.2$

Motivation

- Implicit assumption by classical methods
	- Classical methods use Fourier transform on either *windowed* data/autocorrelation function (ACF)
	- Implicitly assume the unobserved data or ACF outside the window are zero \Rightarrow not true in reality
	- Consequence of windowing: smeared spectral estimate (leading to low resolution)
- ⚫ If prior knowledge about the process is available
	- We can use prior knowledge and select a good model to approximate the process
	- Usually need to estimate fewer model parameters (than nonparametric approaches) using the limited data points we have
	- The model may allow us to better describe the process outside the window (instead of assuming zeros)

General Procedure of Parametric Methods

- Select a model (based on prior knowledge)
- Estimate the parameters of the assumed model
- ⚫ Obtain the spectral estimate implied by the model (with the estimated parameters)

Spectral Estimation using AR, MA, ARMA Models

- Physical insight: the process is generated/approximated by filtering white noise with an LTI filter of rational transfer func *H*(*z*)
- Use observed data to obtain estimates $\hat{r}(k)$ for small k's
	- $\hat{r}(k)$ of larger lags are implicitly extrapolated by the estimated model
- ⚫ Relation between *r*(*k*) and filter parameters {*a^k* } and {*b^k* }
	- Related by Yale-Walker equations
	- $-$ Solve the equations using $\hat{r}(k)$ to obtain $\{\widehat{a}_k\}$ and $\{\widehat{b}_k\}$
	- Plug $\{\widehat{a}_k\}$ and $\{\widehat{b}_k\}$ into $H(Z)$ to obtain the estimated PSD, $\widehat{P}(\omega).$
- ⚫ Deal with MA's nonlinear parameter equations
	- Try to convert/relate them to the AR models that have linear equations

Review: Parameter Equations

Yule-Walker equations (for AR process)

$$
\begin{aligned}\n\gamma_{x}[k] &= \\
\gamma_{x}[k] &
$$

ARMA model and the model of the MA model

$$
N_{x}[k] = N_{x}[k] =
$$
\n
$$
\int_{-\frac{P}{k-1}}^{\infty} d[L] \Gamma_{x}[k-1] + \sigma^{2} \sum_{k=0}^{k+1} h^{k}[k] b[L+k] \quad \text{for } k=0,1,\dots k
$$
\n
$$
= 0,1,\dots k
$$
\n
$$
k=0,1,\dots k
$$
\n
$$
k \geq 2+1
$$
\n
$$
0
$$

8.1 AR Spectral Estimation

(1) Review of AR process

- The time series {*x*[*n*], *x*[*n*−1], …, *x*[*n*−*m*]} is a realization of an AR process of order *M* if it satisfies difference equation $x[n] + a_1 x[n-1] + ... + a_M x[n-M] = v[n]$ where $\{v[n]\}\$ is a white noise process with variance σ^2 .
- Generating an AR process with parameters $\{\hat{a}_i\}$:

$$
\overline{v}_{\text{cm}} = \overline{\left(\frac{H(\zeta)}{K(n)}\right)} \overline{x_{\text{cm}}}
$$
\n
$$
\overline{H}(z) = \frac{1}{1 + \sum_{i=1}^{M} \hat{a}_i z^{-i}}
$$
\n
$$
= \frac{1}{\hat{A}(z)}
$$

The estimated PSD of an AR process {*x*[*n*]} is given by

$$
\hat{P}_{AR}(z) = \frac{\sigma^2}{\hat{A}(z)\hat{A}^*(1/z^*)}
$$

$$
\Downarrow z = e^{j\omega} = e^{j2\pi f}
$$

$$
\hat{P}_{AR}(f) = \frac{\sigma^2}{\left|1 + \sum_{k=1}^{M} \hat{a}_k e^{-j2\pi f k}\right|^2}
$$

Procedure of AR Spectral Estimation

- ⚫ Observe the available data points *x*[0], …, *x*[*N*-1], and Determine the AR process order *p*
- ⚫ Estimate the autocorrelation functions (ACF) *k* = 0, …, *p*

Biased (low variance)
\n
$$
\hat{r}(k) = \frac{1}{N} \sum_{n=0}^{N-1-k} x[n+k]x^*[n] \qquad \hat{r}(k) = \frac{1}{N-k} \sum_{n=0}^{N-1-k} x[n+k]x^*[n]
$$

- Solve $\{\hat{a}_i\}$ from the Yule-Walker equations (or the normal equations of forward linear prediction)
	- Recall for an AR process, the normal equation of FLP is equivalent to the Yule-Walker equation
- ⚫ Obtain estimated power spectrum:

$$
\hat{P}_{AR}(f) = \frac{\sigma^2}{\left|1 + \sum_{k=1}^{p} \hat{a}_k e^{-j2\pi f k}\right|^2}
$$

8.2 Maximum Entropy Spectral Estimation (MESE)

- ⚫ Viewpoint: Extrapolations of ACF
	- $\{\hat{r}[0], \dots, \hat{r}[p]\}\$ is known; there are generally an infinite number of possible extrapolations for *r*(*k*) at larger lags
	- $-$ As long as $\{r[p+1], r[p+2], ...\}$ guarantee that the correlation matrix is non-negative definite, they all form valid ACFs for w.s.s.
- ⚫ Maximum entropy principle
	- Perform extrapolation s.t. the time series (characterized by the extrapolated ACF) has maximum entropy
	- i.e., the time series will be the least constrained thus most random one among all series having the same first (*p*+1) ACF values

=> Maximizing entropy leads to estimated PSD be the smoothest one

– Recall white noise process has flat PSD

MESE for Gaussian Process: Formulation

For a Gaussian random process, the entropy per sample is proportional to

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} \ln P(f) df
$$

Thus the max entropy spectral estimation is
\n
$$
\max \int_{-\frac{1}{2}}^{\frac{1}{2}} \ln P(f) df
$$
\nsubject to
\n
$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} P(f) e^{j2\pi f k} df = \hat{r}(k), \quad \text{for } k = 0, 1, ..., p
$$

MESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution can be found as

$$
\hat{P}_{\text{ME}}(f) = \frac{\sigma^2}{\left|1 + \sum_{k=1}^{p} \hat{a}_k e^{-j2\pi f k}\right|^2}
$$

where $\{\widehat{a}_k\}$ are found by solving the Yule-Walker equations given the estimated ACF values $\hat{r}[0]$, ... $\hat{r}[p]$.

- ⚫ For Gaussian processes, the MESE is equivalent to AR spectral estimator and the $\widehat{P}_{ME}(f)$ is an all-pole spectrum
	- Different assumptions on the process: Gaussian vs. AR processes

8.3 MA Spectral Estimation

An MA(*q*) model

$$
x[n] = \sum_{k=0}^{q} b_k v[n-k] \implies B(z) = \sum_{k=0}^{q} b_k z^{-k}
$$

can be used to define an MA spectral estimator

$$
\hat{P}_{\text{MA}}(f) = \sigma^2 \left| 1 + \sum_{k=1}^{q} \hat{b}_k e^{-j2\pi f k} \right|^2
$$

Recall important results on MA process:

- (1) The problem of solving for b_k given $\{r(k)\}\$ is to solve a set of nonlinear equations;
- (2) An MA process can be approximated by an AR process of sufficiently high order.

Basic Idea to Avoid Solving Nonlinear Equations

Consider two processes:

- Process #1: an approximated high-order AR process in the observed data $x[n]$
	- We model $x[n]$ as a high-order AR process generated by $1/\hat{A}(z)$ filter

• Process #2: an MA process $y[n]$ generated by $\hat{A}(z)$ filter

- Since we know $\hat{A}(z)$, we can obtain $y[n]$'s autocorrelation values $r_y(k)$
- We model process #2 as an AR(q) process => the filter would be $1/\hat{B}(z)$

Use AR Model to Help Finding MA Parameters

– For simplicity, we consider the real coefficients for the MA model.

Note
$$
P_{MA}(z) = \sigma^2 B(z) B(z^{-1})
$$

To approximate it with an AR(*L*) model, i.e.,

- ❖ The RHS represents power spectrum of an AR(*q*) process
- ❖ The inverse ZT of LHS is the ACF of the AR(*q*) process

Recall: ACF of Output Process After LTI Filtering

Use AR to Help Finding MA Parameters (cont'd)

Let $x[n] = w[n] \sim N(0, \sigma_w^2)$ i.i.d., and $h[n] = \hat{a}_n$, we have

$$
r_y(k) = \sigma_w^2 \sum_{n=0}^{L-k} \hat{a}_n \hat{a}_{n+k} \qquad \text{for lag } k
$$

- \rightarrow Knowing autocorrelation sequence $r_v(k)$, the best AR coefficients $\{\widehat{b}_k\}$ for process #2 can be obtained by direct matrix inverse or Levinson-Durbin recursion.
- Note that the best AR coefficients for process #2 are actually the best MA coefficients for process #1.

Durbin's Method

1. Use Levinson-Durbin recursion and solve for

- We first approximate the observed data sequence $\{x[0], ..., x[N]\}$ with an AR model of high order (often pick $L > 4q$)
- We use biased ACF estimator (1/*N*) to ensure nonnegative definiteness and smaller variance than unbiased estimator [1/(*N−k*)]

2. Fit an AR(q) model to the data sequence $\{1,\hat{a}_1,\hat{a}_2,...,\hat{a}_L\}$

$$
\begin{bmatrix}\n\hat{r}_{\alpha}(0) & \hat{r}_{\alpha}(1) & - -\hat{r}_{\alpha}(\ell^{-1}) \\
\hat{r}_{\alpha}(1) & \hat{r}_{\alpha}(0) & \hat{r}_{\alpha}(\ell^{-2}) \\
\vdots & \vdots & \ddots & \vdots \\
\hat{r}_{\alpha}(\ell^{-1}) & - -\hat{r}_{\alpha}(0)\n\end{bmatrix}\n\begin{bmatrix}\n\hat{b}_1 \\
\vdots \\
\hat{b}_g\n\end{bmatrix} = -\n\begin{bmatrix}\n\hat{r}_{\alpha}(1) \\
\vdots \\
\hat{r}_{\alpha}(\ell)\n\end{bmatrix}
$$
\nwhere $\hat{r}_{\alpha}(K) = \frac{1}{L+1} \sum_{n=0}^{L-K} \hat{a}_n \hat{a}_{n1}K$

– The result $\{b_i\}$ is the estimated MA parameters for original $\{x[n]\}$

– Note we add $1/(L+1)$ factor to allow the interpretation of $r_a(k)$ as an autocorrelation function estimator

8.4 ARMA Spectral Estimation

Recall the ARMA(*p*, *q*) model

$$
x[n] = -\sum_{k=1}^{p} a_k x[n-k] + \sum_{k=0}^{q} b_k v[n-k]
$$

We define an ARMA(*p*, *q*) spectral estimator

$$
\hat{P}_{ARMA}(f) = \hat{\sigma}^2 \frac{\left| 1 + \sum_{k=1}^{q} \hat{b}_k e^{-j2\pi f k} \right|^2}{\left| 1 + \sum_{k=1}^{p} \hat{a}_k e^{-j2\pi f k} \right|^2}
$$

Modified Yule-Walker Equations

Recall the Yule-Walker Eqs. for ARMA(*p*, *q*) process

$$
\begin{cases}\n\Gamma_{X}[k] = -\sum_{k=1}^{P} \alpha[k] \Gamma_{X}[k-l] + \sigma^{2} \sum_{k=0}^{2} k^{2}[k] \delta[k]k] \\
\Gamma_{X}[k] = -\sum_{k=1}^{P} \alpha[k] \Gamma_{X}[k-l] & k \geq \ell + 1.\n\end{cases}
$$

We may use equations for $k \geq q+1$ to solve for $\{a_\beta\}$

$$
\begin{bmatrix}\n\Gamma(\frac{2}{6}1) & \Gamma(\frac{2}{6}1) & -\cdot \Gamma(\frac{2}{6} - P + 1) \\
\Gamma(\frac{2}{6} + 1) & \Gamma(\frac{2}{6}) & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\Gamma(\frac{2}{6} + P - 1) & - & -\cdot & \cdot\n\end{bmatrix}\n\begin{bmatrix}\n\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_p\n\end{bmatrix} = -\n\begin{bmatrix}\n\Gamma(\frac{2}{6} + 1) \\
\cdot & \cdot \\
\cdot & \cdot \\
\Gamma(\frac{2}{6} + P)\n\end{bmatrix}
$$

 \Rightarrow S $\&=$ t "Modified Yule-Walker Equations"

Estimating ARMA Parameters

1. By solving the modified Yule-Walker eqs., we obtain

$$
\hat{A}(z) = 1 + \sum_{k=1}^{p} \hat{a}_k z^{-k}
$$

2. We eliminate the AR component by filtering $x[n]$ with FIR filter $\hat{A}(z)$ to obtain an approximate MA(*q*) process:

$$
\hat{A}(z)X(z) = \hat{A}(z)\frac{B(z)}{A(z)}W(z) \approx B(z)W(z)
$$

3. Coefficients $\{b_k\}$ can be estimated by Durbin's method.

Extension: LSMYWE Estimator

- ⚫ Performance by solving *p* modified Yule-Walker equations followed by Durbin's method
	- May yield highly noisy spectral estimates (esp. when the matrix involving ACF is nearly singular due to poor ACF estimates)
- \bullet Improvement: use more than p equations to solve $\{\widehat{a}_1,...,\widehat{a}_p\}$ in a least squared sense
	- Use Yule-Walker equations for $k = (q+1), ..., M$: min $||\mathbf{t} \mathbf{S}\mathbf{a}||^2$
	- Least-squares solution: $\hat{\mathbf{a}} = (\mathbf{S}^H \mathbf{S})^{-1} \mathbf{S}^H \mathbf{t}$
	- Then obtain ${b_k}$ by Durbin's method

➔ "Least-Squares Modified Yule-Walker Equations" (LSMYWE)

Ref: review in Hayes' book Sec.2.3.6 on least square solution

Comparison of Different Methods: Revisit

⚫ Test case: a process consists of narrowband components (sinusoids) and a broadband component (AR)

$$
- x[n] = 2 \cos(\omega_1 n) + 2 \cos(\omega_2 n) + 2 \cos(\omega_3 n) + z[n],
$$

where $z[n] = -a_1 z[n-1] + v[n], a_1 = -0.85, \sigma_v^2 = 0.1,$
 $\omega_1/2\pi = 0.05, \omega_2/2\pi = 0.40, \omega_3/2\pi = 0.42.$

- *N*= 32 data points are available \rightarrow periodogram resolution $f = 1/32$
- ⚫ Examine typical characteristics of various non-parametric and parametric spectral estimators

(Fig.2.17 from Lim/Oppenheim book)

ECE792-41 Statistical SP & ML **Parametric spectral estimation** [25]

8.5 Model Order Selection

- ⚫ The best way to determine the model order is to base it on the physics of the data generation process
- Example: speech processing
	- Studies show the vocal tract can be modeled as an all-pole filter having 4 resonances in a 4kHz band, thus at least 4 pairs of complex conjugate poles are necessary
		- ➔ Typically 10–12 poles are used in an AR modeling for speech
- When no such knowledge is available, we can use some statistical test to estimate the order

Ref. for in-depth exploration: "Model-order selection," by P. Stoica and Y. Selen, IEEE Signal Processing Magazine, July 2004.

Considerations for Order Selection

Modeling error

- Modeling error measures the (statistical) difference between the true data value and the approximation by the model *e.g., estimating linear prediction MSE in AR modeling*
- Usually for a given type of model (e.g., AR, ARMA), the modeling error decreases as we increase the model order
- Balance between the modeling error and the amount of model parameters to be estimated
	- The number of parameters that need to be estimated and represented increases as we use higher model order \rightarrow Cost of overmodeling
	- Can balance modeling error and the cost of going to higher model by imposing a penalty term that increases with the model order

A Few Commonly Used Criteria

- ⚫ Akaike Information Criterion (AIC)
	- A general estimate of the Kullback-Leibler divergence between assumed and true p.d.f., with an order penalty term increasing linearly
	- Choose the model order that minimize AIC

$$
AIC(i) = N \ln \varepsilon_{p} + 2i
$$

size of
available data model error

$$
i=p \text{ for AR}(p)
$$

in-*p* for AR(*p*)
in-*p* + *q* for ARMA(*p*, *q*)

- ⚫ Minimum Description Length (MDL) Criterion
	- Impose a bigger penalty term to overcome AIC's overestimation
	- Estimated order converges to the true order as *N* goes to infinity

 $MDL(i) = N ln \varepsilon_p + (log N)i$