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Summary of Related Readings on Part-lll

Overview Haykins 1.16, 1.10

/. Non-parametric method
Hayes 8.1; 8.2 (8.2.3,8.2.5); 8.3

8. Parametric method
Hayes 8.5, 4.7, 8.4

9. Frequency estimation
Hayes 8.6

Review
— On DSP and Linear algebra: Hayes 2.2, 2.3
— On probability and parameter estimation: Hayes 3.1 —3.2
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Motivation

e Implicit assumption by classical methods

— Classical methods use Fourier transform on either windowed
data/autocorrelation function (ACF)

— Implicitly assume the unobserved data or ACF outside the window
are zero => not true in reality

— Consequence of windowing: smeared spectral estimate
(leading to low resolution)

e If prior knowledge about the process is available

— We can use prior knowledge and select a good model to
approximate the process

— Usually need to estimate fewer model parameters (than non-
parametric approaches) using the limited data points we have

— The model may allow us to better describe the process outside the
window (instead of assuming zeros)
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General Procedure of Parametric Methods

e Select a model (based on prior knowledge)
e Estimate the parameters of the assumed model

e Obtain the spectral estimate implied by the model (with
the estimated parameters)
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Spectral Estimation using AR, MA, ARMA Models

e Physical insight: the process is generated/approximated by filtering
white noise with an LTI filter of rational transfer func H(z)

e Use observed data to obtain estimates #(k) for small k’s
- (k) of larger lags are implicitly extrapolated by the estimated model

e Relation between r(k) and filter parameters {a,} and {b,}
— Related by Yale-Walker equations
— Solve the equations using (k) to obtain {a,} and {b,}
— Plug {a,} and {b,} into H(Z) to obtain the estimated PSD, P(w).

e Deal with MA’s nonlinear parameter equations

— Try to convert/relate them to the AR models that have linear equations
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Review: Parameter Equations

Yule-Walker equations (for AR process)
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8.1 AR Spectral Estimation

(1) Review of AR process

— The time series {x[n], x[n—1], ..., x[n—m]} 1s a realization of

an AR process of order M 1f it satisfies difference equation
x|n] +a x|n=1]+ ... + ay,x[n—M] = v[n]

where {v[n]} is a white noise process with variance o .

— Generating an AR process with parameters {d; }:

1
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~ A(2)
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P.S.D. of AR Process

The estimated PSD of an AR process {x[n]} is given by
52

A(2)A*(1/z*)

PAR(2) =

U z=¢l® =¢J2mf

0.2

PAR(f) = .
|1+ Xk5, Gres2mrk :
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Procedure of AR Spectral Estimation

e Observe the available data points x[0], ..., x[N-1], and
Determine the AR process order p

e Estimate the autocorrelation functions (ACF) k=0, ...,p

Biased (low variance) Unbiased (may not non-neg. definite)
1 N-1-k 1 N-1-k
r(ky=— ) x[n+k]x'[n r(ky=—— ) x[n+k]x"[n
()N;[ Ix"[n] ()N—kn:o[ Ix[n]

e Solve {a;} from the Yule-Walker equations (or the normal
equations of forward linear prediction)

— Recall for an AR process, the normal equation of FLP is
equivalent to the Yule-Walker equation

e ODbtain estimated power spectrum: Fan (1) = 1437 4 o2’
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8.2 Maximum Entropy Spectral Estimation (MESE)

e Viewpoint: Extrapolations of ACF

- {7[0], ...#|p]} is known; there are generally an infinite number of
possible extrapolations for »(k) at larger lags

— As long as {r[pt+1], r[pt2], ...} guarantee that the correlation
matrix 1s non-negative definite, they all form valid ACFs for w.s.s.

e Maximum entropy principle

— Perform extrapolation s.t. the time series (characterized by the
extrapolated ACF) has maximum entropy

— 1.e., the time series will be the least constrained thus most random
one among all series having the same first (p+1) ACF values

=> Maximizing entropy leads to estimated PSD be the
smoothest one

— Recall white noise process has flat PSD
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MESE for Gaussian Process: Formulation

For a Gaussian random process, the entropy per sample
IS proportional to

j% In P(f)df

Thus the max entropy spectral estimation is

max j% In P(£)df

subject to
1

El P(F)e’>df = p(k), fork=0,1,...,p

2
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MESE for Gaussian Process: Solution

Using the Lagrangian multiplier technique, the solution
can be found as

PME(f):

2
O

P oA 2k
‘1+Zk:1ake

2

where {d,} are found by solving the Yule-Walker equations
given the estimated ACF values 7[0], ... 7|p].

e For Gaussian processes, the MESE is equivalent to AR
spectral estimator and the Py (f) is an all-pole spectrum

— Different assumptions on the process: Gaussian vs. AR processes
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8.3 MA Spectral Estimation
An MA(q) model

x[n]= Zq:bkv[n —k] = B(2)= Zq:bkz_k

can be used to define an MA spectral estimator

2

N q A .
P,.(f)=0" 1+Zbke_]2"zﬂ‘
k=1

Recall important results on MA process:

(1) The problem of solving for b, given {r(k)} is to solve a set of
nonlinear equations;

(2) An MA process can be approximated by an AR process of
sufficiently high order.
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Basic Idea to Avoid Solving Nonlinear Equations

Consider two processes:

e Process #1: an approximated high-order AR process in
the observed data x|[n]

— We model x[n] as a high-order AR process generated by 1/A4(z) filter

w WD
o1 S O
) -

3
— XCw]

e Process #2: an MA process y[n] generated by A(z) filter

— Since we know A(z), we can obtain y[n]’s autocorrelation values 7;, (k)

— We model process #2 as an AR(g) process => the filter would be 1/B(z)
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Use AR Model to Help Finding MA Parameters

— For simplicity, we consider the real coefficients for the MA model.

Note P, (z2)=0’B(z)B(z™")

To approximate it with an AR(L) model, i.e.,
2

L
P, (2)=— GA where A(z) =1+ Z&kz‘k
T A A L>>q &

R A ]
AN A(z™H) =
= A )= B

order L order g

s The RHS represents power spectrum of an AR(q) process
% The inverse ZT of LHS is the ACF of the AR(q) process
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Recall: ACF of Output Process After LTI Filtering
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Use AR to Help Finding MA Parameters (cont’d)

Let x[n] = w[n]~N(0,02) i.i.d., and h[n] = a,,, we have

L—k
r,(k) = o, Z G, Atk for lag k
n=0

=> Knowing autocorrelation sequence r, (k), the best AR

coefficients {b,} for process #2 can be obtained by direct
matrix inverse or Levinson-Durbin recursion.

* Note that the best AR coefficients for process #2 are
actually the best MA coefficients for process #1.
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B ) B3 =
Durbin’s Method 5 yew

1. Use Levinson-Durbin recursion and solve for

[Py mto —--Fe0n o EOY
|
T Ry Ry ||k =~
, « 1 * N
AN S A N L0
R — = Ry J b

I\ N--K
where UK = LS xIn) X (i)
— We first approximate the observed data sequence {x[0], ..., x[N]}
with an AR model of high order (often pick L > 4q)

— We use biased ACF estimator (1/N) to ensure nonnegative
definiteness and smaller variance than unbiased estimator [1/(N—k)]
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- ’phm,es& #2
Durbin Method (cont’d) ss
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2. Fit an AR(q) model to the data sequence {1,4,,4,,...,a, }
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where ﬁ‘(m_ Y ;'J:ﬁn&mk

=0

— The result {b,} 1s the estimated MA parameters for original {x[n]}

— Note we add 1/(L+1) factor to allow the interpretation of (k) as an
autocorrelation function estimator
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8.4 ARMA Spectral Estimation
Recall the ARMA(p, q) model

x[n]= —i a,x[n—kj +Zq: bvin—k]

We define an ARMA(p, q) spectral estimator

2
9. A
1+Zbke”2”fk
. A2 k=1
Pyua(f) =0 p 2
1+Z&ke_j2’q[k
k=1
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Modified Yule-Walker Equations

Recall the Yule-Walker Egs. for ARMA(p, q) process

» K
i ) — #o\mmm]wﬁ LRI [k
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We may use equations for k = g+1 to solve for {a}
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—> g @:E “Modified Yule-Walker Equations”

ECE792-41 Statistical SP & ML Parametric spectral estimation



Estimating ARMA Parameters

1. By solving the modified Yule-Walker egs., we obtain

R p
A(z) =1+ Z az"
Py

2. We eliminate the AR component by filtering x[n] with
FIR filter A(z) to obtain an approximate MA(q) process:

B(z)

ADX(2) = A(2) AT

W(z) =~ B(z)W(2)

3. Coefficients {b; } can be estimated by Durbin’s method.
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Extension: LSMYWE Estimator

e Performance by solving p modified Yule-Walker equations
followed by Durbin’s method

— May yield highly noisy spectral estimates (esp. when the matrix
involving ACF is nearly singular due to poor ACF estimates)

e Improvement: use more than p equations to solve {a, ..., d,}
In a least squared sense

— Use Yule-Walker equations for k= (¢+1), ..., M: min||t — Sa|?
— Least-squares solution: & = (S7S)~1S"t
— Then obtain {b, } by Durbin’s method

= “Least-Squares Modified Yule-Walker Equations”™ (LSMYWE)

Ref: review in Hayes’ book Sec.2.3.6 on least square solution
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Comparison of Different Methods: Revisit

e Test case: a process consists of narrowband components
(sinusoids) and a broadband component (AR)
— x[n] = 2cos(win) + 2 cos(wan) + 2 cos(wsn) + z[n],

where z[n] = —ayz[n — 1] +v[n],a; = —0.85,07 = 0.1,
w1 /21 = 0.05,ws /27 = 0.40, w3 /21 = 0.42.

— N=32 data points are available . Sueor
=>» periodogram resolution f=1/32 2 |
¥ 3000
. . . . E 1000 - :
e Examine typical characteristics f
of various non-parametric and E oo} |
parametric spectral estimators g - -
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(Fig.2.17 from Lim/Oppenheim book)
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8.5 Model Order Selection

e The best way to determine the model order is to base it on
the physics of the data generation process

e Example: speech processing

— Studies show the vocal tract can be modeled as an all-pole filter
having 4 resonances in a 4kHz band, thus at least 4 pairs of
complex conjugate poles are necessary

=>» Typically 10—12 poles are used in an AR modeling for speech

e \When no such knowledge is available, we can use some
statistical test to estimate the order

Ref. for in-depth exploration: “Model-order selection,” by P. Stoica and Y. Selen,
IEEE Signal Processing Magazine, July 2004.
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Considerations for Order Selection

e Modeling error

— Modeling error measures the (statistical) difference between the true
data value and the approximation by the model

e.g., estimating linear prediction MSE in AR modeling

— Usually for a given type of model (e.g., AR, ARMA), the modeling
error decreases as we increase the model order

e Balance between the modeling error and the amount of
model parameters to be estimated

— The number of parameters that need to be estimated and represented
increases as we use higher model order =» Cost of overmodeling

— Can balance modeling error and the cost of going to higher model by
imposing a penalty term that increases with the model order
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A Few Commonly Used Criteria

Akaike Information Criterion (AlC)

— A general estimate of the Kullback-Leibler divergence between
assumed and true p.d.f., with an order penalty term increasing linearly

— Choose the model order that minimize AIC

AIC(GH)=Nlheg, 6 + 2i
size of/‘\ AN ? model order:

: model error =p for AR(p)
available data i=p+q for ARMA(p, q)

Minimum Description Length (MDL) Criterion

— Impose a bigger penalty term to overcome AIC’s overestimation

— Estimated order converges to the true order as N goes to infinity

MDL (/))=Nlng, + (logN)i
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