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Recall: Limitations of Periodogram and ARMA
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Motivation

e Random process studied in the previous section:

— w.s.s. process modeled as the output of a LTI filter driven by a white
noise process ~ smooth p.s.d. over broad freq. range

— Parametric spectral estimation: AR, MA, ARMA

e Another important class of random processes:
A sum of several complex exponentials in white noise

dlnl= Y A explj(2x fin+ )]+ win

— The amplitudes and p different frequencies of the complex
exponentials are constant but unknown

Frequencies contain desired info: velocity (sonar), formants (speech) ...

— Estimate the frequencies taking into account of the properties of
such process
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The Signal Model

p o
x[n]= Z Ae’ fi g2 win]
i=l1

n=01,....,N—1 (observe N samples)

: : : 2
w|n] white noise, zero mean, variance O,

A, f real, constant, unknown
=» to be estimated

¢l. uniform distribution over [0, 2T);

uncorrelated with w[n] and between
different i
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PAY

Recall: Single Complex Exponential Case

xee] = A e (Jerfors 4] ot
E(xti)=0 Vn — L
£ xn) xin] | \ A

= £( p(e_x.[:Q@Tfj'bn{-@}s)QE}(FH(ﬂjchhlﬂ b;f.+4>)jj
= Pg""n@,‘ﬁ? L\lLZWjDK/)J S \
SLOXTRT Ts deomen mess. With x(K) = AT exp(garfele)

.
K =0

s
H/Un.j = X+ W) e wee o E ] P\SFE“"KJ] = % 5 DAY,

T“Ytk_) — ELYD’"‘J \Z(*_Ln-lcjj = E[(}([nlTM[P\-})(&*EWK‘]+J[&~{@>]
= M+ M) (v E(x0InC])zo waoreladed)
= Aexp[Jamfek] + ¢S]
E[x()w()]=EX()]Ew()]=0

this crosscorr term vanish

because of uncorrelated *and*
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Deriving Autocorrelation Function

p

x[n] ZA@J¢ A ]=Z [n]+wn]

i=l1

r.(k) = Elx[n]x' [n—k]|= E stl n]}-{zp:sm*[n—k]+w*[n—k]ﬂ
(E[Sl[n E[s [n—k]] =0 (forl=m)
r (k)= A2e’*""*  (forl=m)

s n]]E[W[n k ]
-o0lk]

o[ S,[n]sm*[n — k]]

— B

o Els,[n]w [n—k]|=

=

e Fw[nlw [n—k]|l=0

=>r(k)=FE [x[n]x*[n — k]: = iAizej k1 626 (k)
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Deriving Correlation Matrix

e May bring r,(k) into the correlation matrix

e Or from the expectation of vector’s outer product and use
the correlation analysis from last page
P

(] =Y s, [n]+ win]

| =
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PAY

Summary: Correlation Matrix for the Process

(k) = E|x[n]x"[n—k]|= i A2 4 525(k)

=1\
=
An M x M correlation matrix for {x[n]} (M > p):
Ry, =021 (full rank)
R, = , Pie e _z
where ¢, = [1,6‘j2“fi,e_j4“f’?, . .,e‘jzwf@'(M_l)}T
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Correlation Matrix for the Process (cont’d)

R, = sz_z
r P "ng ]
:[%l;g.lr"'epj P2 -g"l—“
— . |
:A_-—"s - 1.]:DP L—e._;»..J
MX P ‘ ; -
H oy
— S$DS pxp

e.e.”! has rank 1 (all columns are related by a factor)

—1 —1

The M x M matrix R, has rank p, and has only p
nonzero eigenvalues.
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Review: Rank and Eigen Properties

e Multiplying a full rank matrix won’t change the rank of a matrix

ie. 7(A) = r(PA) = r(AQ)
where A 1sm X n, P is m X m full rank, and Q 1s n X n full rank.

— The rank of A is equal to the rank of AA" and A" A.

— Elementary operations (which can be characterized as multiplying by a full
rank matrix) doesn’t change matrix rank:

including interchange 2 rows/cols; multiply a row/col by a nonzero
factor; add a scaled version of one row/col to another.

e Correlation matrix R, in our model has full rank.

e Non-zero eigenvectors corresponding to distinct eigenvalues
are linearly independent

e det(A4) = product of all eigenvalues; so a matrix is invertible iff all
eigenvalues are nonzero.

(see Hayes Sec.2.3 review of linear algebra)
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Eigenvalues/vectors for Hermitian Matrix

e Multiplying A with a full rank matrix won't change rank(A4)
e Eigenvalue decomposition

— For an n X n matrix A having a set of n linearly independent
eigenvectors, we can put together its eigenvectors as V' s.t.

A =V diag(h, Ay, oo, A ) VL

A’UZ' — /\{UZ'
e For any n x n Hermitian matrix Alvi, ..., v
— There exists a set of n orthonormal — vy o] A
eigenvectors —
4 An

— Thus V 1s unitary for Hermitian
matrix A, and

A =V diag(hy, hyy oo, A VE = A vivf + -+ A, v, VE
(see Hayes Sec.2.3.9 review of linear algebra)
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Eigen Analysis of the Correlation Matrix

Let v, be an eigenvector of R, with the
corresponding eigenvalue A, i.e., R, v, = A v,

D Ve = Rshi + 0w Vi = AW

S Rs Ul = (N— 0w ) Yy

l.e., v; is also an eigenvector for R, and
the corresponding eigenvalue is

A =1 —02
R. has p
( ) S
S )\E"-: + 0w >0de (=2 -- P nonzero )
o (= PHl, - M igenvalues
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Signal Subspace and Noise Subspace

For (=P#l,--- M, stq_f_iz O*ﬂé

Also, Rs= SDS" ;

SDSH V¢ =o for i=p+1, ..., M

—
M x p, full rank=p

l.e., the p column vectors are linearly independent

— Ry s =
~ S _1.} ¢ 9.-' 7 121,2,...,]9
Since S= C&i epl = €Y, =0, i=p+l,..M

ov Spreie - £p) - Spoenflpan oo Unp
SIGNAL SUBSPACE  NOISE SUBSPACE

eigenvalue = g
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Relations Between Signal and Noise Subspaces

Since R, and R, are Hermitian matrices,
the eigenvectors are orthogonal to each other:
Vit Vi Y i£]
= span§ Wi, .-~ Lp} L 5P Lper, L

Recall SPM €, ~~- ._Q_Pl' A S]D%'%llp{—l. --- ’lef‘

AV, noise eigenvector

!/

So it follows that

_ signal
SPM% &~ Ep k _” eigenvectors "\\; = U
spamd V- VpY U e»  SIGNAL

e sig. vector SUBSPACE

ECE792-41 Statistical SP & ML Frequency estimation



Discussion: Complex Exponential Vectors

—j2 —j4 —2aM-1f |
g(f):[l,e‘”?f,e"’?f,...,e"”( )f]
1 — ej27f(f1—fz)M

M -1

H 2 —5)k .

e (f)-elf)= & = m s i fi 2
k=0 o

If f, — f, =%, for some integer a = gH(fl)-g(fz):O

SPM e, ~-- ._Q_Pl' - S]DM‘%’QPH: 'ny‘,

AL, Noise eigenvector

SPM%.@"I“"@-P?: signal W

eigenvector "\A
SP""”‘% Vii---Ypg U /L €2 SIGNAL

e, sig. vector SUBSPACE



Frequency Estimation Function: General Form

H
Recall ¢, v, =0 forl=1, ...p; i=p+l, .. M

Knowing eigenvectors of correlation matrix R,, we can use
these orthogonal conditions to find the frequencies {f, }:

e’ (f)y,=0?

We form a frequency estimation function

1 Here a; are properly
P (f)= chosen constants
Z o, e(f) Vz (weights) for producing
p—" - weighted average for

— f)(f) is LARGE at ]rl,m’fp prc?jecti_on power with all

noise eigenvectors
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Pisarenko Method for Frequency Estimation (1973)

= Assumes the number of complex exponentials, p, is
known, and the first p+1 lags of the autocorrelation
function, r(0), ..., r(p), are known/have been estimated.

* The eigenvector corresponding to the smallest
eigenvalue of R,,y«p+1) IS the sole component of the
noise subspace.

* The equivalent frequency estimation function is:

B(f)=———
(/)" Vi
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Interpretation of Pisarenko Method

Since € (f )V =0 , wherev,., =[v(0),...v(p)]’

P .
= D Vo ()27 =0
k=0

e, DTFT{v,()}|,__, =0 R

T

B
W

p
Z[Vi ()] = sz‘ (k)z " =0 the angle of zeros reflects the freq.
k=0

Re

frequencies by finding the p—1 zeros
on unit circle:

’
We can estimate the sinusoidal - C
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Estimating the Amplitudes

Once the frequencies of the complex exponentials are
determined, the amplitudes can be found from the
eigenvalues of R,:

Rv.=Av, (i=12,.,p) normalize v, s.t.

v, =1
=V R V. =Av.v. =1 H b

ll—l l

_ H 2
Recall Rx—Zﬂgkgk +o.1
k

p
= > Ple/v,
k=1 T
DTFT of sig eigvector v,(-) at — f, =» Solve p equations for { P, }

2

= A —va, i=1,..,p
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Limitations of Pisarenko Method

e Need to know or accurately estimate the # of sinusoids, p.

e |nhaccurate estimation of autocorrelation values
=> [naccurate eigen results of the (estimated) correlation matrix.

=> p zeros on unit circle in frequency estimation function may not
be on the right places.

e What if we use a larger MxM correlation matrix?

— More than one eigenvectors will form the noise subspace: Which of
M—p eigenvectors shall we use to check orthogonality with e(f) ?

— For one particular eigenvector chosen, there are M—1 zeros:

- p zeros correspond to the true frequency components, whereas
- M—1—p zeros lead to false peaks.
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MUIltiple Signal Classification (MUSIC) Algorithm

e Basic idea of MUSIC algorithm

— Reduce spurious peaks of freq. estimation function by averaging over
the results from M—p smallest eigenvalues of the correlation matrix

=> |.e., to find those freq. that give signal vectors consistently
orthogonal to all noise eigenvectors.
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MUSIC Algorithm
The frequency estimation function F@)
. 1 ™
Pyvusic(f) = =37 5 J\M
2 impt1 €7 ()] —
1 Locate JL
= the peaks
e (HVVHe() i
where Q(f) _ '17 6—j27rf’ e—j47rf7 . e—j27rf(M_1)}T
V= :Qp—l—lv T vQM}
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FREQUENCY ESTIMATION

455

Example-1

( Fig.8.31 from M. Hayes Book;

examples are for 6x6 correlation
matrix estimated from 64-value
observations )
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Figure 8.31 Frequency estimation functions of a single complex exponential in
white noise. (a) The frequency estimation Junction that uses all of the noise eigen-
vectors with a weighting a; = 1. (b) An overlay plot of the frequency estimation
functions V;(e/*) = 1/|e"v;|? that are derived from each noise eigenvector.



Example-2

Table 8.10 Noise Subspace Methods for Frequency

Estimation
Pisarenko P, (ei)= :
’ e - IEHmeP
A . 1
MUSIC Pyy(e/®) = T
Z le v, |*
i=p+l
: - . |
Eigenvector Method Pey(e/?) = =
1
Z }Tieh{vt 12
i=pr1
5% 1
Minimum Norm Pyun(e’®) = PE a=AP,u

PRINCIPAL COMPONENTS SPECTRUM ESTIMATION 469
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Figure 8.37 The frequency estimation functions for a process consisting of four complex exponen-
tials in white noise using (a) the Pisarenko harmonic decomposition, (b) the MUSIC algorithm, (c)
the eigenvector method and (d) the minimum norm algorithm.

( Fig.8.37 & Table 8.10 from M. Hayes Book;
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overlaying results of 10 realizations with 64
observed signal points each. )



