Statistical Signal Processing 9. Subspace Approaches to Frequency Estimation

Electrical & Computer Engineering North Carolina State University

Acknowledgment: ECE792-41 slides were adapted from ENEE630 slides developed by Profs. K.J. Ray Liu and Min Wu at the University of Maryland, College Park. Contact: chauwai.wong@ncsu.edu.

Recall: Limitations of Periodogram and ARMA

Motivation

- ⚫ Random process studied in the previous section:
	- w.s.s. process modeled as the output of a LTI filter driven by a white noise process \sim smooth p.s.d. over broad freq. range
	- Parametric spectral estimation: AR, MA, ARMA
- Another important class of random processes: A sum of several complex exponentials in white noise

$$
x[n] = \sum_{i=1}^{p} A_i \exp[j(2\pi f_i n + \phi_i)] + w[n]
$$

– The amplitudes and *p* different frequencies of the complex exponentials are constant but unknown

Frequencies contain desired info: velocity (sonar), formants (speech) …

– Estimate the frequencies taking into account of the properties of such process

<i>The Signal Model</i>
$x[n] = \sum_{i=1}^{p} A_i e^{j\phi_i} e^{j2\pi f_i n} + w[n]$
$n = 0, 1, ..., N - 1$ (observe <i>N</i> samples)
$w[n]$ white noise, zero mean, variance σ_w^2
A_i, f_i real, constant, unknown
→ to be estimated
ϕ_i uniform distribution over [0, 2π);
uncorrelated with $w[n]$ and between different <i>i</i>

Recall: Single Complex Exponential Case

$$
X[n] = A exp [j(2\pi f_0 n + \phi)]
$$
\n
$$
E[XT]
$$
\n
$$
E[XT]
$$
\n
$$
E[X[n]] = 0
$$
\n
$$
W
$$
\n
$$
E[XT]
$$
\n
$$
= E[A exp [j(2\pi f_0 n + \phi)] \cdot A exp [j(2\pi f_0 n - 2\pi f_0 k + \phi)]]
$$
\n
$$
= A^2 \cdot exp [j(2\pi f_0 k)]
$$
\n
$$
= A^2 \cdot exp [j(2\pi f_0 k)]
$$
\n
$$
= X[n] + N[n]
$$
\n
$$
W
$$
\n
$$
= X[n] + N[n]
$$
\n
$$
= E[NT]
$$
\n
$$
W
$$
\n
$$
= E[X[n] + N[n] \quad \text{while } m \ge 0
$$
\n
$$
= \Gamma_X [K] + \Gamma_W [K] \quad (\because E[X[n] \wedge [1 - K] - \psi[n + \phi]) = 0
$$
\n
$$
= A^2 exp [j2\pi f_0 k] + \sigma^2 S(k)]
$$
\n
$$
= E[X(N)] = E[X(N)] = 0
$$
\n
$$
= \text{the } (N \ge 0)
$$
\n
$$
= E[X] = E[X]
$$
\n
$$
= \text{the } (N \ge 0)
$$
\n
$$
= E[X] = E[X]
$$

ECE792-41 Statistical SP & ML $\qquad \qquad$ zero mean for either $\mathsf{x}(\)$ or w(). \quad this crosscorr term vanish because of uncorrelated *and*

Deriving Autocorrelation Function

$$
x[n] = \sum_{i=1}^{p} A_i e^{j\phi_i} e^{j2\pi f_i n} + w[n] = \sum_{i=1}^{p} s_i[n] + w[n]
$$

$$
r_x(k) = E[x[n]x^*[n-k]] = E\left[\sum_{i=1}^{p} s_i[n] + w[n]\right] \cdot \left[\sum_{m=1}^{p} s_m^*[n-k] + w^*[n-k]\right]
$$

•
$$
E[s_l[n]s_m^*[n-k]] = \begin{cases} E[s_l[n]]E[s_m[n-k]]^* = 0 & \text{ (for } l \neq m) \\ r_{s_m}(k) = A_m^2 e^{j2\pi f_m k} & \text{ (for } l = m) \end{cases}
$$

$$
\bullet E\big[s_l[n]w^*[n-k]\big] = E\big[s_l[n]\big]E\big[w[n-k]\big]^* = 0
$$

$$
\bullet E[w[n]w^*[n-k]] = \sigma_w^2 \cdot \delta[k]
$$

$$
= \sum r_x(k) = E[x[n]x^*[n-k]] = \sum_{i=1}^p A_i^2 e^{j2\pi f_i k} + \sigma_w^2 \delta(k)
$$

 $\mathsf{cy}\ \mathsf{estimation}\ \mathsf{[6]}$

Deriving Correlation Matrix

- May bring $r_{x}(k)$ into the correlation matrix
- ⚫ Or from the expectation of vector's outer product and use the correlation analysis from last page

$$
\underline{x}[n] = \sum_{i=1}^{p} \underline{s}_{i}[n] + \underline{w}[n]
$$

$$
R_{x} = E[\underline{x}[n] \underline{x}^{H}[n]] = E\left[\left[\sum_{l=1}^{p} \underline{s}_{l}[n] + \underline{w}[n]\right] \cdot \left[\sum_{m=1}^{p} \underline{s}_{m}^{H}[n] + \underline{w}^{H}[n]\right]\right]
$$

$$
\Rightarrow R_{x} = \sum_{i=1}^{p} P_{i} \underline{e}_{i} \underline{e}_{i}^{H} + \sigma_{w}^{2} I
$$

Summary: Correlation Matrix for the Process

$$
r_x(k) = E\big[x[n]x^*[n-k]\big] = \sum_{\substack{i=1 \text{ even} \\ \text{odd } k}} A_i^2 e^{j2\pi f_i k} + \sigma_w^2 \delta(k)
$$

An $M \times M$ correlation matrix for $\{x[n]\}(M > p)$:

$$
R_x = R_s + R_w
$$

\n
$$
R_w = \sigma_w^2 I \text{ (full rank)}
$$

\n
$$
R_s = \sum_{i=1}^p P_i \underline{e}_i \underline{e}_i^H
$$

\nwhere $\underline{e}_i = [1, e^{-j2\pi f_i}, e^{-j4\pi f_i}, \dots, e^{-j2\pi f_i(M-1)}]^T$

Correlation Matrix for the Process (cont'd)

H $e_i e_i^H$ has rank 1 (all columns are related by a factor) The $M \times M$ matrix R_s has rank p , and has only p nonzero eigenvalues.

Review: Rank and Eigen Properties

⚫ Multiplying a full rank matrix won't change the rank of a matrix

i.e. $r(A) = r(PA) = r(AQ)$ where A is $m \times n$, P is $m \times m$ full rank, and Q is $n \times n$ full rank.

- The rank of A is equal to the rank of AA^H and $A^H A$.
- Elementary operations (which can be characterized as multiplying by a full rank matrix) doesn't change matrix rank:

including interchange 2 rows/cols; multiply a row/col by a nonzero factor; add a scaled version of one row/col to another.

- Correlation matrix R_x in our model has full rank.
- Non-zero eigenvectors corresponding to distinct eigenvalues are linearly independent
- $det(A)$ = product of all eigenvalues; so a matrix is invertible iff all eigenvalues are nonzero.

(see Hayes Sec.2.3 review of linear algebra)

Eigenvalues/vectors for Hermitian Matrix

- Multiplying A with a full rank matrix won't change $rank(A)$
- ⚫ Eigenvalue decomposition
	- For an $n \times n$ matrix A having a set of n linearly independent eigenvectors, we can put together its eigenvectors as V s.t.

 $A = V \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n) V^{-1}$

- For any $n \times n$ Hermitian matrix
	- There exists a set of n orthonormal eigenvectors

$$
Av_i = \lambda_i v_i
$$

\n
$$
A[v_1, \dots, v_n]
$$

\n
$$
= \underbrace{[v_1, \dots, v_n]}_{V} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}
$$

 Λ_{α} , Λ_{α}

 $-$ Thus V is unitary for Hermitian matrix A , and

 $A = V \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n) V^H = \lambda_1 \mathbf{v}_1 \mathbf{v}_1^H + \cdots + \lambda_n \mathbf{v}_n \mathbf{v}_n^H$

(see Hayes Sec.2.3.9 review of linear algebra)

Eigen Analysis of the Correlation Matrix

Let \underline{v}_i be an eigenvector of R_x with the corresponding eigenvalue λ_i , i.e., $R_x \underline{v}_i = \lambda_i \underline{v}_i$

$$
\therefore R_x \underline{v} i = R_s \underline{v} i + \sigma_w^2 \underline{v} i = \lambda i \underline{v} i
$$

$$
\therefore R_s \underline{v} i = (\lambda i - \sigma_w^2) \underline{v} i
$$

i.e., $\underline{\mathsf{v}}_{\mathsf{i}}$ is also an eigenvector for R_{s} , and the corresponding eigenvalue is

$$
\lambda_i^{(s)} = \lambda_i - \sigma_w^2
$$
\n
$$
\lambda_i = \begin{cases}\n\lambda_i^{(s)} + \sigma_w^2 > \sigma_w^2, \quad i = 1, 2, \quad -\cdot p \\
\sigma_w^2 > \quad i = p+1, \quad -\cdot M\n\end{cases}
$$
\n(R_s has p
\nnonzero
\neigenvalues

L

Signal Subspace and Noise Subspace

For
$$
i = P+1, \dots M
$$
: $R_S \times \underline{v} i = 0 \times \underline{v} i$
\nAlso, $R_S = SDS^H$,
\n $\therefore SDS^H \underline{v} i = 0$ for $i=p+1, ..., M$
\n $\overline{M \times p}$, full rank=p

i.e., the p column vectors are linearly independent

$$
\Rightarrow S^{\text{H}} \underline{v} = 0
$$
\nSince $S = [S_1, \dots, S_p] \Rightarrow e_i^H \underline{v}_i = 0, \quad i = p+1, \dots, M$
\n
$$
\therefore \text{Span} \{\underline{e}_1, \dots, \underline{e}_p\} \perp \text{Span} \{\underline{v}_{p+1}, \dots, \underline{v}_{m}\}
$$

\n
$$
\text{SIGNAL SUBSPACE}
$$

\n
$$
\text{NOISE SUBSPACE}
$$

\neigenvalue = σ_e^2

Relations Between Signal and Noise Subspaces

Since R_x and R_s are Hermitian matrices,

the eigenvectors are orthogonal to each other:

$$
\underline{U}i \perp \underline{V}j \quad \forall i \neq j
$$
\n
$$
\Rightarrow \text{Span}\{\underline{V}_{1}, \dots \underline{V}_{p}\} \perp \text{Span}\{\underline{V}_{p+1}, \dots \underline{V}_{M}\}
$$
\nRecall
$$
\text{Span}\{\underline{e}_{1}, \dots \underline{e}_{p}\} \perp \text{Span}\{\underline{V}_{p+1}, \dots \underline{V}_{M}\},
$$
\nSo it follows that\n
$$
\text{Span}\{\underline{e}_{1}, \dots \underline{e}_{p}\} = \text{sign vectors}
$$
\n
$$
\text{Span}\{\underline{V}_{1}, \dots \underline{V}_{p}\} = \text{sign vectors}
$$
\n
$$
\underline{V}_{2}
$$
\n
$$
\underline{V}_{3}
$$
\nSIGNAL
\n
$$
\underline{V}_{1}
$$
\n
$$
\underline{V}_{2}
$$
\n
$$
\underline{V}_{2}
$$
\n
$$
\underline{V}_{3}
$$
\nSIGNAL
\n
$$
\underline{V}_{2}
$$
\n
$$
\underline{V}_{3}
$$
\nSIGNAL
\n
$$
\underline{V}_{3}
$$
\n
$$
\underline{V}_{4}
$$
\n
$$
\underline{V}_{5}
$$
\n
$$
\underline{V}_{6}
$$
\n
$$
\underline{V}_{8}
$$
\nSIGNAL
\n
$$
\underline{V}_{9}
$$

Discussion: Complex Exponential Vectors

$$
\underline{e}(f) = \left[1, e^{-j2\pi f}, e^{-j4\pi f}, \dots, e^{-j2\pi(M-1)f}\right]^T
$$
\n
$$
\underline{e}^H(f_1) \cdot \underline{e}(f_2) = \sum_{k=0}^{M-1} e^{j2\pi(f_1 - f_2)k} = \frac{1 - e^{j2\pi(f_1 - f_2)M}}{1 - e^{j2\pi(f_1 - f_2)}} \text{ if } f_1 \neq f_2
$$
\nIf $f_1 - f_2 = \mathcal{A}_M$ for some integer $a \Rightarrow e^H(f_1) \cdot \underline{e}(f_2) = 0$
\n
$$
\text{Span}\left\{\underline{e}_1, \dots, \underline{e}_p\right\} \perp \text{Span}\left\{\underline{v}_{p+1}, \dots, \underline{v}_m\right\},
$$
\n
$$
\downarrow b
$$
\n
$$
\text{Disc eigenvector}
$$
\n
$$
\text{Span}\left\{\underline{e}_1, \dots \underline{e}_p\right\} = \text{sign vectors}
$$
\n
$$
\downarrow \downarrow b
$$
\n
$$
\downarrow c
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow e
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow e
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow e
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow e
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow e
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow e
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow e
$$
\n
$$
\downarrow d
$$
\n
$$
\downarrow d
$$

ECE α setimation $\overline{\alpha}$

Frequency Estimation Function: General Form

Recall
$$
e_i^H \nu_i = 0
$$
 for $i = 1, ..., p$; $i = p+1, ... M$

Knowing eigenvectors of correlation matrix R_{x} , we can use these orthogonal conditions to find the frequencies $\{f_l\}$:

$$
\underline{e}^H(f)\underline{v}_i=0?
$$

We form a frequency estimation function

$$
\hat{P}(f) = \frac{1}{\sum_{i=p+1}^{M} \alpha_i |\underline{e}(f)^H \underline{v}_i|^2}
$$

\n
$$
\Rightarrow \hat{P}(f) \text{ is LARGE at } f_1, ..., f_p
$$

Here *αⁱ* are properly chosen constants (weights) for producing weighted average for projection power with all noise eigenvectors

Pisarenko Method for Frequency Estimation (1973)

- Assumes the number of complex exponentials, *p*, is known, and the first *p*+1 lags of the autocorrelation function, *r*(0), …, *r*(*p*), are known/have been estimated.
- The eigenvector corresponding to the smallest eigenvalue of $\mathbf{R}_{(p+1)\times(p+1)}$ is the sole component of the noise subspace.
- **The equivalent frequency estimation function is:**

$$
\hat{P}(f) = \frac{1}{\left| e(f)^H v_{\min} \right|^2}
$$

Interpretation of Pisarenko Method

Since
$$
\underline{e}^H(f) \underline{v}_{\min} = 0
$$
, where $\underline{v}_{\min} = [v(0), ..., v(p)]^T$
\n $\Rightarrow \sum_{k=0}^p v_{\min}(k) e^{j2\pi f k} = 0$
\ni.e., DTFT $\{v_i(\cdot)\}_{f=-f_i} = 0$

We can estimate the sinusoidal frequencies by finding the *p*−1 zeros on unit circle:

$$
Z[v_i(\cdot)] = \sum_{k=0}^{p} v_i(k) z^{-k} = 0
$$
 the angle of zeros reflects the freq.

Estimating the Amplitudes

Once the frequencies of the complex exponentials are determined, the amplitudes can be found from the eigenvalues of R_{x} :

$$
R_{x} \underline{v}_{i} = \lambda_{i} \underline{v}_{i} \quad (i = 1, 2, ..., p) \quad \text{normalize } \underline{v}_{i} \text{ s.t.}
$$
\n
$$
\Rightarrow \underline{v}_{i}^{H} R_{x} \underline{v}_{i} = \lambda_{i} \underline{v}_{i}^{H} \underline{v}_{i} = \lambda_{i}
$$
\n
$$
\text{Recall} \quad R_{x} = \sum_{k=1}^{p} P_{k} \underline{e}_{k} \underline{e}_{k}^{H} + \sigma_{w}^{2} I
$$
\n
$$
\Rightarrow \sum_{k=1}^{p} P_{k} \underline{e}_{k}^{H} \underline{v}_{i} = \lambda_{i} - \sigma_{w}^{2}, \quad i = 1, ..., p
$$
\nFor size eigenvector u (let f .) Solve a equation for (P.)

DTFT of sig eigvector *v*_{*i*}(·) at − *f*_{*k*} → Solve *p* equations for { P_k }

Limitations of Pisarenko Method

- ⚫ Need to know or accurately estimate the # of sinusoids, p.
- ⚫ Inaccurate estimation of autocorrelation values
	- => Inaccurate eigen results of the (estimated) correlation matrix.
	- \Rightarrow *p* zeros on unit circle in frequency estimation function may not be on the right places.
- What if we use a larger M×M correlation matrix?
	- More than one eigenvectors will form the noise subspace: Which of *M−p* eigenvectors shall we use to check orthogonality with $\underline{e}(f)$?
	- For one particular eigenvector chosen, there are *M−*1 zeros:
		- *p* zeros correspond to the true frequency components, whereas
		- *M*−1−*p* zeros lead to false peaks.

MUltiple SIgnal Classification (MUSIC) Algorithm

- ⚫ Basic idea of MUSIC algorithm
	- Reduce spurious peaks of freq. estimation function by averaging over the results from *M−p* smallest eigenvalues of the correlation matrix
	- => i.e., to find those freq. that give signal vectors **consistently orthogonal** to all noise eigenvectors.

MUSIC Algorithm

The frequency estimation function

$$
\hat{P}_{\text{MUSIC}}(f) = \frac{1}{\sum_{i=p+1}^{M} |e^H(f)\underline{v}_i|^2} \qquad \text{[MML]}
$$
\n
$$
= \frac{1}{e^H(f)VV^H \underline{e}(f)} \qquad \text{the peaks}
$$

where
$$
\underline{e}(f) = [1, e^{-j2\pi f}, e^{-j4\pi f}, \dots, e^{-j2\pi f(M-1)}]^T
$$

$$
V = [\underline{v}_{p+1}, \dots, \underline{v}_M]
$$

 $\hat{p}(t)$

(Fig.8.31 from M. Hayes Book; examples are for 6x6 correlation matrix estimated from 64-value observations)

Figure 8.31 Frequency estimation functions of a single complex exponential in white noise. (a) The frequency estimation function that uses all of the noise eigenvectors with a weighting $\alpha_i = 1$. (b) An overlay plot of the frequency estimation ECE792-41 Statistical SP & ML functions $V_i(e^{j\omega}) = 1/|\mathbf{e}^H \mathbf{v}_i|^2$ that are derived from each noise eigenvector.

tials in white noise using (a) the Pisarenko harmonic decomposition, (b) the MUSIC algorithm, (c) the eigenvector method and (d) the minimum norm algorithm.

ECE792-41 Statistical SP & ML estimation for the control observed signal points each.) (Fig.8.37 & Table 8.10 from M. Hayes Book; overlaying results of 10 realizations with 64