
ECE 792-41 Homework 3

Material Covered: Nearest-Neighbor Regression, Curse of Dimensionality,

Generalization Error, Bias–Variance Tradeoff, PCA/KLT

Problem 1 (Alternative Neighbor Averaging Method for Simulated Data)

a) Given a regression function f(x) = x2 + 2x + 1 and a generative model Y = f(X) + e, where

e ∼ N(0, 1) and X ∼ Uniform(−1, 1), generate 50 pairs of (xi, yi) and graph them using

black circles. Also plot the regression function using a black solid curve.

b) We use a method similar to the nearest neighbor averaging to estimate the regression function.

We use a neighborhood of fixed radius δ = 0.1. The estimated regression function takes the

following form:

f̂(x) =
1

|I(x)|
∑
i∈I(x)

yi, I(x) = {i : |x− xi| ≤ δ}, (1)

where I(x) is the set of indices of xi such that they are within δ in terms of distance from

x, and |I(x)| is the number of elements of set I(x). For example, when x = 0.9 and δ = 0.1,

you first need to find all points that are within the range of [0.8, 1.0] in the x-direction, and

then take the average of their values in the y-direction to obtain f̂(0.9). You may want to

calculate f̂(·) for all x ∈ [−0.9, 0.9] with a stepsize 0.01. If there is not a single point within

the current neighborhood, use the f̂ from the previous step as that for the current step. Draw

the estimated regression function using a red solid curve in the same plot of a).

c) Vary the neighborhood radius δ, how does the shape of the estimated regression function change?

Problem 2 (Curse of Dimensionality) Read the first paragraph of the problem statement of ESL-

2.4. Note that we may also write X = (X1, X2, . . . , Xp), where Xk ∼ N (0, 1) for k = 1, . . . , p.

Use a programming language of your choice. To get started, set p = 10. Note that in this

problem, all vectors are column vectors.

a) Write a computer program to randomly draw/generate N = 100 vectors from the template

random vector X, namely, {x˜(i), i = 1, . . . , N}. Note that each vector should contain p

normally distributed random numbers. Plot all vectors as points in a 3-D space consisting of

the first, second, the last coordinates.

b) Calculate the coordinate value of each point after being projected on to a fixed direction specified

by a = x˜0/||x˜0||, namely, z(i) = aTx˜(i). Here, x˜0 is an arbitrary nonzero vector of length

p, “T” is the transpose operation, and z(i) ∈ R. What are the sample mean and sample

variance of the projected coordinates {z(i), i = 1, . . . , N}?
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c) Repeat a) and b) for p ∈ [1, 80]. You may want to use a for loop to achieve this. Optionally,

put your code for parts a) and b) into a function to make your code easier to read. Plot the

sample variance of the projected coordinates as a function of p.

d) Calculate the squared distance of each point to the origin, namely, d2
i = ||x˜(i)||2. What is the

sample mean of {d2
i , i = 1, . . . , N}? Plot the sample mean of the squared distance as a

function of p in the same plot of c). Limit the range of y-axis between 0 and 80. For p = 5,

inspect the values of any five d2
i ’s. Do the results in b) and c) match with conclusion drawn

in the third paragraph of ESL-2.4?

e) Use the formulas from (b), prove that Var(Z) = 1 where Z = aTX, and E[D2] = p where

D = ||X||. Are the theoretical results in this part consistent with the simulated results

obtained in c) and d)? (Hint: The sum of p squared normal random variables is a chi-square

random variable χ2
p. The mean of χ2

p is p.)

Problem 3 (Effect of Smaller Training Set on Generalization Error) Given a training sample

{Xi}ni=1 and a testing sample {Yi}mi=1 that are drawn independent from a normal distribu-

tion N(µ, σ2). We are interested in quantifying the test/prediction/generalization error for

{Yi}mi=1.

a) Show that one good estimator for Yi is Ŷi = 1
n

∑n
j=1Xj . (Hint: Construct an estimator for µ

using {Xi}ni=1, and then propose an estimator for a random variable Y with mean µ.)

b) Show that the expected test/prediction/generalization error is (1 + 1
n)σ2. Plot expected gener-

alization error as a function of the training sample size.

c) Generate one empirical curve using m = 10 and varying n. Repeat the empirical curve gen-

eration process for 100 times and overlay the curves in one single plot. How is this plot

compared to that resulted from b)?

Problem 4 (Bias–Variance Tradeoff) Given a true model Y
(0)
i = β1xi + µ + ei, i = 1, . . . , n,

ei ∼ N (0, σ2), we draw a sample {(xi, Y (0)
i )}ni=1. Someone falsely believes that the sample

is generated from a smaller model Yi = µ+ εi, and is trying to estimate µ based on his/her

belief using least-squares. Denote the estimate by µ̃.

a) Calculate the bias of µ̃. How is the result compared to the bias if the true model is used for

estimation?

b) Show that the variance expressions of the estimated µ are
∑
x2i∑

x2i−nx̄2
· σ2

n and σ2

n if the true model

and the smaller model are used for estimation, respectively. Which one is smaller? Consider

the results in (a) and (b), argue whether the smaller model is better.

2



Problem 5 (Bias and Variance Curves for Polynomial Regression) Assume y is a 5th-order poly-

nomial function of x corrupted by additive Gaussian noise. Select by yourself the true weights

{βi}5i=0 and the noise variance and fix them throughout this problem. Generate a dataset

{(xi, yi)}1000
i=1 , where xi ∼ N (0, 1). Below, we examine the bias and variance behaviors of the

estimators of β0 (the intercept) at different complexity levels of a fitted model.

a) Calculate and draw the theoretical curves of bias2 and variance for fitted models whose poly-

nomial order equals 0, 1, . . . , 10. (You may use the under-/overfit formula derived in class.)

b) Keep {βi}5i=0 and {xi}1000
i=1 unchanged, repeatedly generate 50 datasets and draw the empirical

curves for bias2 and variance.

Problem 6 (Bonus) (PCA via KLT on Downsampled Yale Face Database) In this problem, we

will explore PCA as a visualization tool for Yale Face Database. Download the .m files and

the database. Extract the face image files into a folder named yalefaces and put the .m

files at the same level of the folder. Open main_pca_visualization.m in Matlab.

a) Run the code of (a), explain the data structure of variable img_buffer. Set preview_img_flag

to 1, re-run the code to visually inspect the whole database.

b) Complete Matlab function [V, Lambda_mat] = PcaViaKlt(data) by implementing PCA using

eigendecomposition on a sample covariance (not correlation) matrix of the face data. The

detailed information about the input and outputs are given in the comments of the incomplete

function. You may use built-in function eig for eigendecomposition. If your implementation

is correct, after running the code of (b), you will obtain a plot similar to the following.
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c) Run the code of (c) to visualize a couple of dominating eigenvectors. Comment on whether they

reflect some characteristics of the faces you saw in (a).
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d) The code of (d) projects each face image (coming from one of the four selected classes) onto a

2D space. Comment on PCA’s data visualization performance in this specific example.
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